

Fourth National Audit Report

2012

Prepared by

David Chadwick BM BCh FRCS MD **on behalf of the British Association of Endocrine & Thyroid Surgeons**

Robin Kinsman BSc PhD
Peter Walton MA MBA FRCP
Dendrite Clinical Systems

Fourth National Audit Report

2012

Prepared by

David Chadwick BM BCh FRCS MD on behalf of the British Association of Endocrine and Thyroid Surgeons

Robin Kinsman BSc PhD
Peter Walton MA MBA FRCP
Dendrite Clinical Systems

The British Association of Endocrine and Thyroid Surgeons operates the BAETS National Registry in partnership with Dendrite Clinical Systems Limited. The Society also gratefully acknowledges the assistance of Dendrite Clinical Systems for:

- building, maintaining & hosting the web registry
- · data analysis and
- · publishing this report.

Dendrite Clinical Systems Ltd is registered under the Data Protection Act; Data Protection Act Registration Register Number Z98 44 379

This document is proprietary information that is protected by copyright. All rights reserved. No part of this document may be photocopied, stored in a retrieval system, transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the permission of the publishers and without prior written consent from the British Association of Endocrine and Thyroid Surgeons and Dendrite Clinical Systems Limited.

Price: £30.00

October 2012 A catalogue record for this book is available from the British Library.

ISBN 978-0-9568154-3-9

Published by Dendrite Clinical Systems Ltd

fax

The Hub, Station Road, Henley-on-Thames,

Oxfordshire RG9 1AY, United Kingdom

phone +44 1491 411 288

e-mail publishing@e-dendrite.com

+44 1491 411 377

Printed & Kindly bound by sponsored by

CLINICAL SYSTEMS

Fourth National Audit Report 2012

Foreword

Endocrine disease is complex and so is much of the associated surgery . In my foreword to the last report I highlighted my view that

... all surgeons have a professional, moral and social responsibility to know what they are doing and how well they are doing it ...

because such knowledge underpins the quest for excellence in surgical endeavour and gets to the heart of surgical professionalism.

So, collecting and contributing data to this audit should be seen as a professional duty: a hallmark of a responsible endocrine and thyroid surgeon. Since the publication of the last report there has been a greater drive towards transparency of healthcare data, which will enhance the standing of reports such as this, but it will also raise legitimate questions regarding those surgeons who are not contributing.

The NHS is going through massive change. The three underlying principles are: firstly, to make clinical outcomes the currency of the NHS, secondly, to give clinicians a greater say in how services are delivered and, thirdly, to give patients a greater say in their own treatment.

Clinical audits and on-going registries will have an increasing role to play as clinical outcomes are more closely linked to commissioning of services, organisational financial incentives and reconfiguration of services. At a more individual level the benchmarking of personal activity and outcomes will help with revalidation and the acquisition of clinical excellence awards.

The British Association for Endocrine and Thyroid Surgeons should be congratulated not only for maintaining momentum with this 4th report, but also for insisting that only those surgeons who genuinely seek to understand their practice, analyse their outcomes and contribute to a national body of knowledge are deserving of membership.

Prof. Sir Bruce Keogh

NHS Medical Director and National Medical Director NHS Commissioning Board

Fourth National Audit Report 2012

Introduction

This fourth Report of the BAETS National Audit continues to impress. It now details outcomes of almost 29,000 endocrine surgical procedures and, in line with previous audits, it continues to record levels of surgical activity, analyse training and degrees of sub-specialisation as well as comment on both short- and long-term outcomes after endocrine surgery.

The report highlights some important trends with regards to decreases in length-of-stay and in some complication rates such as hypocalcaemia after thyroidectomy (albeit with the incorporation of new definitions for early and late hypocalcaemia). Multivariate analysis has highlighted those factors affecting complications, and shows for example that early hypocalcaemia is increased by lower age, female gender, Graves' disease and level VI dissection. However, the rate of late hypocalcaemia still exceeds 10%.

While some of the results are encouraging with regards to audit involvement and to the use of MDT discussion, outcomes for FNAC are less than ideal (which probably has contributed to an unnecessary increase in surgery rates). In addition, there still remains no consensus regarding the use of laryngoscopy (either pre- or post-operatively), with a large variation between members in both the use and reporting of this investigation particularly when it comes to revision surgery. Also, in line with previous reports, a significant number of surgeons continue to operate on small numbers of cases of medullary thyroid cancer, as well as cancer in children.

Another important observation of the audit relates to trends in technology, and it is interesting to note that less than 20% of members regularly use the nerve monitor, and early enthusiasm with the harmonic scalpel is now being matched by an increased use of the ligasure device. Other highlights of the audit focus on the use of preoperative imaging and localisation studies for surgery for hyperparathyroidism. In the future, it should be possible (in line with recent publications) to evaluate surgical complications in relation to increasing age of the surgeon. This will be interesting.

One of the strengths of this audit will be to facilitate the appraisal and revalidation process. This means we will need to provide members with their personal results in an appropriate format (largely funnel plots), which will allow comparison with national benchmarking data. However, before we can do this, we will need to refine the findings from multivariate analysis, to allow adjustment of outcomes by case-mix. We can only do this if the data are robust, so one of the aims of the society, over the next few years, will be to improve data collection using a number of methods such as mandatory fields, which will make it impossible to log off without completion, as well as making data submission compulsory for membership.

This audit remains a balance between collecting sufficient minimum data to provide worthwhile analysis, and the burden of over-collection. Its limitations include the fact that it is purely a surgical database, so that data on for instance adjuvant therapies for thyroid cancer or for tumours not undergoing surgery are not collected. Also, the majority of thyroidectomies in the United Kingdom are performed by non-BAETS members, and therefore are not recorded in our audit. Nationally, there are moves to improve data collection on thyroid cancer treatment, both surgical and non-surgical, *via* existing data sources collected by NHS Trusts and Cancer Registries. The BAETS is currently working in collaboration with the NCIN to advance this process, and this can only be in our best interests.

The success of this audit is dependent upon members submitting their data, and I am grateful to you all for doing this and hopefully in the future submission rates will improve further. In addition I would also like to congratulate David Chadwick for putting this excellent audit together, in combination with Dendrite who continue to provide the data analysis and publish the report, which allows us to continue this unique prospective evidence base.

Happy reading!

John Watkinson

President, British Association of Endocrine and Thyroid Surgeons

Fourth National Audit Report 2012

Executive summary

This is the fourth report of the BAETS National Audit, detailing outcomes of almost 29,000 endocrine surgical procedures accrued since inception of the audit until April 2011. Data for analysis were extracted in November 2011, allowing for a full 6 months to have elapsed and therefore for late / follow-up outcomes to be recorded.

Since the last report in 2009, some modifications have been made to the database, in particular:

- Incorporation of firmer definitions for early and late hypocalcaemia after thyroidectomy.
- Changes in the fields for post-operative vocal cord assessment, to improve comparisons between members and assess the reliability of estimates of recurrent laryngeal nerve injury rates.
- Changes in cancer staging systems, incorporating TNM version 7 in place of version 5.

As in previous reports, some of the data presented encompass the whole database, while others relate to the last 3 years or last financial year, allowing comparison of trends in outcomes over time and for the published figures to represent the most up-to-date data.

The database continues to expand, indeed at an increasing rate, and members are commended for their efforts in entering data, thereby making the audit a powerful tool for establishing a national benchmark for outcomes of endocrine surgery.

A number of new features have been included in this report, in particular items addressing the possible ultimate role of the audit data in revalidation / appraisal. Foremost amongst these are issues of data quality and of risk stratification.

To this end, sections have been added on:

- 1. Data quality, particularly missing data.
 - This section demonstrates considerable variation between members in completeness of data entry, independent of workload. This variation, and the level of missing data overall, has the potential to compromise assessment of surgical outcomes. Discussion needs to take place amongst the membership as to how this issue might best be resolved in future.
- 2. Multi-variate analysis of outcomes after thyroidectomy, with a view to ultimate production of a method of risk-stratification/adjustment, which might allow members' individual results to be adjusted for case-mix.

The main findings from the data analysis are:

Thyroid Surgery

- The total number of thyroid cases in the database is now 18,904.
- Most thyroid surgery is performed for benign indications; colloid goitre and Graves' disease together accounting for over 50% of cases.
- Total thyroidectomy has largely replaced bilateral subtotal thyroidectomy as the treatment of choice for thyrotoxicosis.
- For euthyroid patients, the commonest indications for surgery remain biopsy result and compressive symptoms. For retrosternal goitre the vast majority of operations are performed for compressive symptoms.
- Most thyroid cancer is of papillary subtype, and the large majority of cases are Stage 1. There is evidence of more advanced T-stage for Hürthle-cell and medullary cancers.
- There appears to be no consensus on the use of laryngoscopy either pre- or post-operatively, with huge variation between members in use of and reporting of this investigation. This raises doubt as to the accuracy of any estimates of recurrent laryngeal nerve palsy generated by the audit, and hampers comparison between members with respect to this most important outcome measure.

Fourth National Audit Report 2012

- Fine needle aspiration cytology (FNAC) remains the mainstay of pre-operative diagnosis, but its relatively low definitive diagnosis rate (C5/Thy5) results in many cancer diagnoses only being made by diagnostic surgery, largely lobectomy. When a C5/Thy5 result is obtained, however, the likelihood of total thyroidectomy and lymph node dissection at the first procedure significantly increases.
- MDT discussion prior to the first operation appears to increase the proportion of cancers undergoing total thyroidectomy at the first procedure, if cytology is equivocal.
- Data on lymph node dissection have been included in more detail. There seems to be no consensus on the use of level VI dissection, particularly in PTC.
- There has been an increase in the use of alternate technologies for tissue dissection / sealing, particularly Harmonic scalpel and Ligasure devices. Nerve monitoring remains relatively uncommon.
- Length-of-stay after thyroid surgery has declined in recent years, with most patients staying
 in hospital for only 24 hours. True daycase surgery (same-day discharge), however, remains
 uncommon. Management of hypocalcaemia seems to be a common reason for longer stays.
- Multi-variate analysis of outcomes shows that:
 - 1. Bleeding after thyroid surgery is largely affected by extent of resection (bilateral subtotal > total > lobectomy) and increasing age.
 - 2. Early hypocalcaemia is increased by lower age, female gender, Graves' disease and level VI dissection.
 - 3. Late hypocalcaemia is largely dependent on level VI dissection, with those other factors that affect early hypocalcaemia becoming much less relevant.

Parathyroid surgery

- The total number of cases in the database is 8,619.
- The use of localization studies prior to parathyroid surgery continues to increase, with the great majority of primary HPT cases undergoing localization, largely with both nuclear medicine and ultrasound scanning.
- More detail has been included in this report on the utility of imaging, particularly its influence on use
 of targeted surgery and success rates of surgery (cure of hypercalcaemia). Overall, only around half
 of cases ultimately have targeted surgery.
- The overall rate of persistent hypercalcaemia after first-time surgery for primary HPT is 4.7%. Cure
 rates are reduced by MEN diagnosis and for re-operative surgery, and are improved by use of qPTH.
 Use of localization studies per se does not influence cure rates. However, when nuclear medicine
 scanning is performed a negative result predicts a significantly worse outcome. This effect persists
 in multi-variate analysis.
- Length-of-stay after parathyroid surgery continues to decline over time, with most patients staying <2 days. True daycases represent about 5%, with the majority being targeted operations.

Adrenal surgery

- The total number of adrenal cases is 1,359.
- The majority of surgery is performed for functioning tumours, particularly phaeochromocytoma.
- There has been an increase since the last report in the incidence of surgery for tumours metastatic to the adrenal gland.
- Data have been included for the first time on malignancy rates in relation to functional status and lesion size. A significant number of lesions under 50 mm diameter were malignant, all either metastases or phaeochromocytomas.

Introduction

The British Association of Endocrine and Thyroid Surgeons

Fourth National Audit Report 2012

- Surgery was initially laparoscopic in >80% of cases, mainly by the trans-peritoneal route, and with increased use of *alternate technologies*, particularly the Harmonic scalpel. Length-of-stay was significantly shorter for laparoscopic than for open surgery.
- The conversion rate for laparoscopic surgery was 8.1%.
- The mortality rate was 0.6%.

Pancreatic surgery

- Only a further 7 operations for pancreatic endocrine disease have been entered since the 2009 report.
- Around one-third are performed laparoscopically, and, if so, length-of-stay is shorter.
- Mortality was zero.

In conclusion, the audit continues to expand and to provide interesting information on the surgical management of endocrine disease. With further increases in patient numbers and attention to improving data quality, accurate benchmarking and use of the audit data reliably to inform appraisal and revalidation cannot be far away.

David Chadwick

Director of BAETS Audit, April 2011

roreword	3
Introduction	4
Executive summary	5
Thyroid Surgery	5
Parathyroid surgery	6
Adrenal surgery	6
Pancreatic surgery	7
Basic principles of endocrine surgery	
Thyroid	16
Basic anatomy and physiology	16
Pathology	16
Endocrine dysfunction	16
Enlargement of the thyroid gland (Goitre)	16
Investigations	19
Surgery	19
Parathyroid	20
Basic anatomy and physiology	20
Pathology	20
Investigations	21
Surgery	21
Adrenal glands	22
Basic anatomy and physiology	22
Pathology	22
Functioning	22
Non-functioning	22
Investigations	23
Surgery	23
Pancreas	24
Basic anatomy and physiology	24
Pathology	24
Investigations	24
Surgery	24
A note on the conventions used throughout this report	25
Conventions used in tables	25
Conventions used in graphs	26
Funnel plots	27
Contributors	28

The British Association of Endocrine and Thyroid SurgeonsFourth National Audit Report 2012

-	
(0
į	₹.
ï	D

Missing data	30
Thyroid surgery data	30
Parathyroid surgery data	33
Adrenal surgery data	34
Summary	3:

Fourth National Audit Report 2012

Surgery for thyroid disease

General information from the database	38
Number of members	38
Demographics and disease profile	40
Age	40
Age & gender	41
Primary pathology	42
Primary pathology for all patients	42
Cancer at first operation	44
Cancer and age	44
Cancer and gender	45
Cancer and staging	46
Laterality of nodal surgery	47
T stage	48
N and M Stage	51
Surgery for thyrotoxicosis	52
Thyroid status and operation	52
Hyperthyroidism and operation	53
Surgery for euthyroid / hypothyroid patients	54
Investigations	56
Pre-operative laryngoscopy for first time operations	56
Pre-operative laryngoscopy for re-operative cases	56
Fine Needle Aspiration Cytology (FNAC)	58
Cancer and indication for surgery	60
FNAC result and pathology	62
Multi-disciplinary team (MDT) meeting	64
Operation	66
All operations	66
Operations for thyroid cancer	66
Operations for papillary thyroid cancer	68
First-time surgery	70
Type of operation and pathology	70
Lymph node dissection for cancer	75
Re-operative surgery	78
Grade of surgeon	79
Grade of assistant	81
Consultant involvement	82
Surgeon & assistant	83
Energy source	84
Nerve monitoring	85

The British Association of Endocrine and Thyroid SurgeonsFourth National Audit Report 2012

General outcomes	86
Hypocalcaemia	86
Hypocalcaemia after total thyroidectomy	86
Hypocalcaemia after surgery for papillary thyroid cancer	86
Hypocalcaemia after total thyroidectomy for multi-nodular goitre	87
Hypocalcaemia after surgery for Graves' disease	88
Hypocalcaemia treatment after thyroid surgery	89
Post-operative stay	90
Post-operative laryngoscopy / voice check	94
Comment on the laryngoscopy and RLN palsy data	97
Outcomes for first-time operations	98
Overview of post-operative events	98
Hypocalcaemia	100
Hypocalcaemia and type of operation	100
Hypocalcaemia and workload	101
Late hypocalcaemia	102
Late hypocalcaemia and type of operation	102
Late hypocalcaemia and workload	103
Outcomes for redo operations	104
Overview of post-operative events	104
Multi-variate analyses of factors affecting outcomes after thyroid surgery	106
Bleeding	106
Hypocalcaemia	110
Late hypocalcaemia	112
Conclusions	113

Fourth National Audit Report 2012

Surgery for parathyroid disease

General information from the database	116
Number of members	116
Demographics and disease profile	118
Pathology	118
Pathology and age	118
Renal pathology	119
Investigations	120
Localisation techniques	120
An overview of localisation techniques used	120
Targeted approach	122
Localisation techniques and the targeted approach	122
qPTH and conversion	126
Glands removed and the targeted approach	127
Operation	128
Operation sequence	128
Glands removed and operation sequence	129
Glands removed for patients with primary pathology	130
Glands removed and age at operation	131
Surgeon	132
Assistant	133
Consultant involvement	134
Outcomes	136
Persisting hypercalcaemia	136
Post-operative stay	139
Proven RLN palsy	140
Re-operation for haemorrhage	140
Mortality	141

Content

The British Association of Endocrine and Thyroid Surgeons

Fourth National Audit Report 2012

162

162

163

163

163

Surgery for adrenal disease	
General information from the database	144
Number of procedures	144
Demographics and disease profile	146
Age and gender	146
Diagnosis	147
Malignancy	148
Malignancy and diagnosis	148
Malignancy rates for each member	149
Malignancy and maximum size on radiology	150
Diagnosis and anatomy	151
Operation	152
Operation type	152
The surgical team	153
Energy source used	154
Outcomes	156
Post-operative stay	156
Related readmission	157
Mortality	157
Surgery for endocrine pancreatic disease	
General information from the database	160
Number of members	160
Demographics and disease profile	161
Diagnosis	161
Operation	162

Appendices

Surgeon

Outcomes

Type of operation

Crude in-hospital mortality

Post-operative stay

The database forms 166

Prelude

Basic principles of endocrine surgery

The following section is a brief synopsis that is intended to help those with a less comprehensive knowledge of endocrine surgery to more easily understand the data presented in this audit report. It is by no means an exhaustive text and is biased towards the data collected in the BAETS registry.

Thyroid

Basic anatomy and physiology

The thyroid gland is situated low in the midline of the neck in front of the upper three tracheal rings. It consists of a right and left lobe that are joined in the middle by an isthmus. Under the influence of thyroid-stimulating hormone (TSH), secreted by the anterior pituitary gland, the thyroid gland secretes thyroid hormones (T_4/T_3), which regulate the oxygen consumption of the tissues.

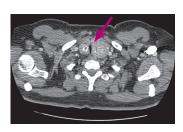
Pathology

There are essentially two basic disorders of the thyroid gland:

Endocrine dysfunction

Excess thyroxine production leads to thyrotoxicosis (hyperthyroidism). The commonest causes for this are:

Graves' disease 85%.Toxic multi-nodular goitre 10%.Toxic adenoma 5%.


In all three of these conditions thyroid surgery is one option for definitive treatment.

Insufficient thyroxine production (hypothyroidism) is usually due to an **auto-immune thyroiditis** (Hashimoto's disease) and surgery is rarely indicated.

Enlargement of the thyroid gland (Goitre)

Goitre is common and is typically benign. Most patients have normal thyroid function (euthyroid). Surgery for benign goitre may be indicated when the goitre leads to compression of the trachea or oesophagus.

Figure 1. CT scans of a man with stridor in the presence of a goitre.

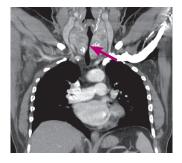


Figure 1b.

3D coronal reconstruction demonstrating narrowing of the trachea (arrows) at the level of the thyroid isthmus.

Fourth National Audit Report 2012

Thyroid cancer is rare (1 per 100,000 men, 3 per 100,000 women).

- 85% of cancers are described as differentiated and arise from the follicular thyroid cell. They are sub-divided into two forms: papillary (80%) and follicular (20%). Papillary thyroid cancers (PTC) often metastasise to local lymph nodes in the neck. Treatment for both sub-types involves thyroid resection, often with nodal dissection for PTC, followed by radio-iodine therapy.
- Medullary thyroid cancer accounts for 10% of thyroid cancers. These
 are derived from the C-cells of the thyroid and so radio-iodine therapy is
 ineffective. The best treatment is thyroidectomy with lymph node dissection.
 Approximately 25% of patients with medullary thyroid carcinoma have an
 inherited genetic mutation for multiple endocrine neoplasia type II (MEN-II).
- Anaplastic thyroid cancer and thyroid lymphoma are both exceedingly rare and surgery has a very limited role in the treatment of these conditions.

Thyroid cancers are staged pathologically on the basis of the **TNM classification**. The BAETS used the AJCC fifth edition (1997 used until October 2010).

TNM staging in version5

Tivivi staging in versions		
T stage	T1 T2 T3 T4 TX	<1 cm >1 cm & <4 cm >4 cm extra-thyroidal spread unknown/cannot be defined
N stage	NO N1 N1a N1b NX	negative lymph nodes positive lymph nodes ipsilateral neck elsewhere unknown
M stage	M0 M1 MX	no metastases metastases unknown

Overall stage in version 5

<45 years old	I II	Any T/N with M0 Any T/N with M1
>45 years old	I II III IV	T1, N0, M0 T2/T3, N0, M0 T4, N0, M0 or any T, N1, M0 Any T/N with M1

After October 2010, TNM version 7 has been used:

TNM staging in version 7

	рТ0	No evidence of primary tumour
	pT1a	≤10 mm, limited to thyroid
	pT1b	>10 mm and ≤20 mm, limited to thyroid
	pT2	>20 mm, ≤40 mm, limited to thyroid
	рТ3	> 40 mm, limited to thyroid or any tumour with minimal extra-thyroidal extension
T stage	pT4a	Tumour invades beyond thyroid capsule and invades any of: subcutaneous soft tissues, larynx, trachea, oesophagus, recurrent laryngeal nerve
	pT4b	Tumour invades pre-vertebral fascia, mediastinal vessels, or encases carotid artery
	рТХ	primary tumour cannot be assessed
	All ana _l	olastic carcinomas are considered pT4 tumours
	pNX	unknown
Natago	pN0	No regional nodes involved
N stage	pN1a	Metastasis in level VI lymph nodes
	pN1b	Metastasis in other nodes (I-V,VII)
M stage	M1	Distant metastases proven histologically

Overall stage in version 7

	Overall stage in version 7					
Papillary or follicular cancer						
	<45 years old	1 2	Any T/N with M0 Any T/N with M1			
	>45 years old	1 2 3 4a 4b 4c	T1, N0, M0 T2, N0, M0 T3, N0, M0 or T1-3, N1a, M0 T1-3, N1b, M0 or T4a, any N, M0 T4b, any N, M0 Any T/N, M1			
Me	dullary cancer					
	Any age	1 2 3 4a 4b 4c	T1, N0, M0 T2-3, N0, M0 T1-3, N1a, M0 T1-3, N1b, M0 or T4a, any N, M0 T4b, any N, M0 Any T/N, M1			
Anaplastic cancer						

All anaplastic cancers are Stage 4

Fourth National Audit Report 2012

Investigations

- 1. Endocrine function thyroid function tests.
- 2. Biopsy of a thyroid nodule. All patients who present with a new swelling in the thyroid should undergo a biopsy. This is undertaken using fine needle aspiration cytology (FNAC). There are 5 possible outcomes:
 - C1 Non-diagnostic.
 - C2 Non-neoplastic.
 - C3 Some features of PTC; follicular neoplasm.
 - C4 Suspicious for malignancy.
 - C5 Diagnostic of malignancy.
- 3. Imaging. This includes nuclear medicine, ultrasound and cross-sectional imaging with CT and MRI.

Figure 2. Neck ultrasound of a 19-year-old female with papillary thyroid cancer.

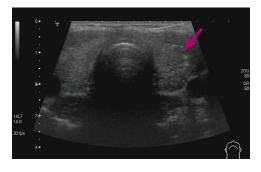


Figure 2a.

Demonstrating diffuse micro-calcification in a lesion in the left thyroid lobe characteristic of psammoma bodies (arrow).

Figure 2b.

Illustrates a malignant-appearing node adjacent to the major vessels in left level III (with calliper markings).

Surgery

Thyroid surgery involves a variety of operations including:

- total thyroidectomy (right and left lobectomy).
- thyroid lobectomy.
- sub-total lobectomy.
- isthmusectomy (resection of only the isthmus).
- or a combination of these procedures.

Patients with cancer may also undergo clearance of the lymph nodes in the neck to a greater or lesser extent based on the pathology and stage of the disease.

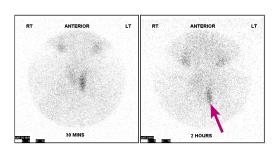
Recognised specific complications of thyroid surgery include:

- 1. Haemorrhage in the early post-operative period, which can necessitate a re-operation.
- 2. Injury to the recurrent laryngeal nerve/nerves. This may be temporary or permanent.
- 3. Injury to the parathyroid glands leading to hypocalcaemia, which requires replacement with calcium supplements and vitamin D. This may be temporary or permanent.

Complications are more likely to occur when an operation is carried out after previous surgery.

Parathyroid

Basic anatomy and physiology


There are usually four parathyroid glands, which are situated close to the thyroid gland. The superior pair are the more constant in position on the posterior border of the thyroid gland midway between the lower and upper poles of the thyroid gland. The inferior pair lie in a more variable position, usually within the thyrothymic tract, a condensation of fascia between the thyroid gland and the thymus. The parathyroid glands secrete parathyroid hormone (PTH) in response to changes in calcium levels in the blood.

Pathology

Parathyroid disease is mostly concerned with overproduction of PTH leading to hyperparathyroidism (HPT). There are essentially two types of HPT:

- Primary hyperparathyroidism. This is an inappropriate hypersecretion of PTH leading to a high blood calcium level (hypercalcaemia). This is due to a tumour in one or more of the parathyroid glands. Most patients have a benign growth of one gland, but up to 15% may have a growth of two, three or all four glands. Parathyroid cancer is very rare (<1%). Primary HPT may also be seen in Multiple Endocrine Neoplasia Syndromes (MEN, types 1 and 2). These are inherited syndromes associated with tumours in various endocrine organs. In MEN-1, primary HPT is the commonest manifestation, and is more commonly associated with multiple parathyroid lesions (*multi-gland disease*). This often necessitates resection of multiple parathyroids, and potentially may lead to lower primary cure rates and higher risks of later recurrent HPT, compared to sporadic HPT. The only permanent way to return the blood calcium levels to normal in patients with primary HPT is resection of the abnormal parathyroid gland / glands (parathyroidectomy).
- Renal hyperparathyroidism. Patients with kidney failure are predisposed to an appropriate excess secretion of PTH that often does not lead to hypercalcaemia, but the excessive levels of PTH can cause symptoms. In this condition all four parathyroid glands become enlarged. Very high PTH and/or hypercalcaemia are indications for parathyroidectomy.

Figure 3. Pre-operative localisation images of a 69-year-old female with primary HPT using a nuclear medicine scan (MIBI) and neck ultrasound.

Figure 3a.

The early and delayed MIBI neck images localising an enlarged parathyroid gland to the inferior pole of the left thyroid lobe (arrow).

Figure 3b.

Illustrating the appearances of a parathyroid adenoma, which is in the same location (marked with callipers).

Basic principles

The British Association of Endocrine and Thyroid Surgeons

Fourth National Audit Report 2012

Investigations

1. Endocrine function (calcium and PTH).

2. Parathyroid localisation – using imaging to determine the location of the abnormal gland(s) once the biochemical diagnosis of HPT has been confirmed. There are various localising techniques:

Non-invasive ultrasound, Scintiscan, MRI, CT.

Invasive selective venous sampling, angiography.

Per-operative methylene blue, isotope probe.

Surgery

Parathyroidectomy comprises removal of the abnormal gland/glands. In patients with multiple-gland disease the surgeon makes a decision to resect two, three, three-and-a-half or all four glands. In addition to the preoperative localisation techniques, there are some intra-operative techniques that some surgeons employ including localisation with intravenous methylene blue, localisation with an isotope probe and measurement of the PTH: the so-called quick PTH assay (qPTH).

Recognised specific complications of parathyroidectomy include:

- 1. Haemorrhage in the early post-operative period, which can necessitate a re-operation.
- 2. Injury to the recurrent laryngeal nerve/nerves. This may be temporary or permanent.
- 3. A failure to cure the hyperparathyroidism, this may either be immediate or delayed (persistent or recurrent HPT).

As with thyroid surgery, complications are more likely to occur when an operation is carried out as a re-operative procedure after previous surgery.

Fourth National Audit Report 2012

Adrenal glands

Basic anatomy and physiology

The adrenals are paired glands that are situated superior to the kidneys in the retroperitoneum. Each gland is approximately 5 cm long, 3 cm wide and 1 cm thick. The gland has two functionally distinct units:

The adrenal cortex secretes three classes of steroid hormones:

- 1. Cortisol (glucocorticoid).
- 2. Aldosterone (mineralocorticoid).
- 3. Androgens (sex-steroids).

The adrenal **medulla** secretes catecholamines (adrenaline and noradrenaline).

Pathology

Tumours of the adrenal can be classified into two groups:

Functioning

Where the clinical presentation is dependant upon the effects of the excess production of steroid or catecholamine:

Cortex

- Glucocorticoid excess manifests as **Cushing's** syndrome.
- Mineralocorticoid excess manifests as Conn's syndrome.
- Sex steroid excess manifests with virilizing features.

Medulla

 Catecholamine excess – Phaeochromocytoma (10% of these tumours arise outside the adrenal gland). Phaeochromocytoma is also a manifestation of MEN-II.

Non-functioning

- Benign adrenocortical adenoma usually asymptomatic.
- Malignant adrenocortical carcinoma often large and invading adjacent structures.

Adrenalectomy is the definitive treatment for functioning tumours.

Adrenalectomy is the first-line treatment for adrenocortical carcinoma.

Non-functioning adrenocortical adenomas are generally managed conservatively until they reach a size that makes clinicians anxious that the tumour could be malignant (≥ 4 cm).

Fourth National Audit Report 2012

Investigations

- 1. Endocrine function tests of the cortex and medulla.
- 2. Imaging.
 - a. Functional nuclear medicine scans.
 - b. Anatomical usually cross sectional with CT/MRI.

Figure 5. A cross sectional CT scan demonstrating a large right adrenal tumour (arrow) in a 35-year-old male with a biochemical diagnosis of a phaeochromocytoma.

Surgery

Adrenal surgery involves resection of one or both adrenal glands dependant upon the pathology. The gold-standard approach is laparoscopic. Open surgery is still favoured for larger tumours or when malignancy is suspected.

Pancreas

Basic anatomy and physiology

The pancreas is a gland that lies in the retroperitoneal space across the midline. In addition to its exocrine function, approximately 2% of its cells are endocrine: the islets of Langerhans. These are distributed throughout the pancreas, but are more densely populated in the pancreatic tail. There are differing cell types within the islets that secrete insulin, glucagon, somatostatin and vasoactive intestinal peptide (VIP).

Pathology

Tumours of the endocrine pancreas are exceptionally rare.

Insulinoma

1-2 per million.

VIPoma

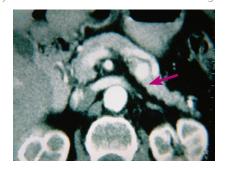
1 per 10 million.

Glucagonoma

1 per 20 million.

Somatostatinoma

1 per 40 million.


Each tumour has unique manifestations consequent upon the specific hormone excess.

5–10% insulinomas are associated with MEN-I.

Investigations

- 1. Endocrine function.
- 2. Imaging.
 - a. Anatomical cross sectional CT/MRI, ultrasound (including endoscopic).
 - b. Functional nuclear medicine, selective catheterization.

Figure 4. Magnified CT scan of the pancreas demonstrating enhancing lesion in the body of the pancreas in a 79-year-old female with a biochemical diagnosis of an insulinoma (arrow).

Surgery

Currently the conventional approach to pancreatic surgery is a laparotomy, but there is growing enthusiasm for a laparoscopic approach for small tumours. Insulinomas are typically small (<2 cm) and are either excised by enucleation or a distal pancreatectomy depending upon the relationship of the tumour to the pancreatic duct and splenic vessels.

Fourth National Audit Report 2012

A note on the conventions used throughout this report

There are a number of conventions used in the report in an attempt to ensure that the data are presented in a simple and consistent way. These conventions relate largely to the tables and the graphs, and some of these conventions are outlined below.

The specifics of the data used in any particular analysis are made clear in the accompanying text, table or chart. For example, many analyses sub-divide the data on the basis of placement intention, and the titles for both tables and charts will reflect this fact.

Conventions used in tables

On the whole, unless otherwise stated, the tables and charts in this report record the number of procedures (see the example below, which is a modified version of the table presented on page 41).

Thyroid surgery: age and gender distributions

		Gender				
		Male	Female	Unspecified	All	Proportion female
Age at surgery / years	<21	94	375	0	469	80.0%
	21-30	285	1,657	0	1,942	85.3%
	31-40	571	3,273	0	3,844	85.1%
	41-50	682	3,733	0	4,415	84.6%
	51-60	726	2,978	0	3,704	80.4%
	61-70	606	2,047	0	2,653	77.2%
	71-80	355	1,166	0	1,521	76.7%
	>80	66	284	0	350	81.1%
	Unspecified	1	5	0	6	83.3%
	All	3,386	15,518	0	18,904	82.1%

Each table has a short title that is intended to provide information on the subset from which the data have been drawn, such as the patient's gender or particular operation sub-grouping under examination.

The numbers in each table are colour-coded so that entries with complete data for all of the components under consideration (in this example both age and gender) are shown in regular black text. If one or more of the database questions under analysis is blank, the data are reported as unspecified in red text. The totals for both rows and columns are highlighted as emboldened text.

Some tables record percentage values; in such cases this is made clear by the use of an appropriate title within the table and a % symbol after the numeric value.

Rows and columns within tables have been ordered so that they are either in ascending order (age at procedure: <20, 20-24, 25-29, 30-34, 35-39, etc.; post-procedure stay 0, 1, 2, 3, >3 days; etc.) or with negative response options first (No; None) followed by positive response options (Yes; One, Two, etc.).

Row and column titles are as detailed as possible within the confines of the space available on the page. Where a title in either a row or a column is not as detailed as the authors would have liked, then footnotes have been added to provide clarification.

There are some charts in the report that are not accompanied by data in a tabular format. In such cases the tables are omitted for one of a number of reasons:

- insufficient space on the page to accommodate both the table and graph.
- there would be more rows and / or columns of data than could reasonably be accommodated on the page (for example, Kaplan-Meier curves).
- the tabular data had already been presented elsewhere in the report.

Conventions used in graphs

The basic principles applied when preparing graphs for this fourth BAETS Report were based, as far as possible, upon William S. Cleveland's book *The elements of graphing data* ¹. This book details both best practice and the theoretical bases that underlie these practices, demonstrating that there are sound, scientific reasons for plotting charts in particular ways.

Counts: The counts (shown in parentheses at the end of each graph's title as n=) associated with each graph can be affected by a number of independent factors and will therefore vary from chapter to chapter and from page to page. Most obviously, many of the charts in this report are graphic representations of results for a particular group (or subset) extracted from the database, such as thyroid surgery. This clearly restricts the total number of database-entries available for any such analysis.

In addition to this, some entries within the group under consideration have data missing in one or more of the database questions under examination (reported as unspecified in the tables); all entries with missing data are excluded from the analysis used to generate the graph because they do not add any useful information.

For example, in the graph on page 41 (reproduced below), only the entries where both the thyroid status and the kind of operation are known are included in the analysis; this comes to 18,898 patient-entries (94 + 285 + 571 + 682 + 726 + 606 + 355 + 66 + 375 + 1,657 + 3,273 + 3,733 + 2,978 + 2,047 + 1,166 + 284; the 6 entries with unspecified data are excluded from the chart).

90% Percentage female patients 86% 82% 78% 74% 70% <21 21-30 31-40 41-50 51-60 61-70 71-80 >80 Age at surgery / years

Thyroid surgery: Age and gender (n=18,898)

Confidence interval: In the charts prepared for this report, most of the bars plotted around rates (percentage values) represent 95% confidence intervals ². The width of the confidence interval provides some idea of how certain we can be about the calculated rate of an event or occurrence. If the intervals around two rates do not overlap, then we can say, with the specified level of confidence, that these rates are different; however, if the bars do overlap, we cannot make such an assertion.

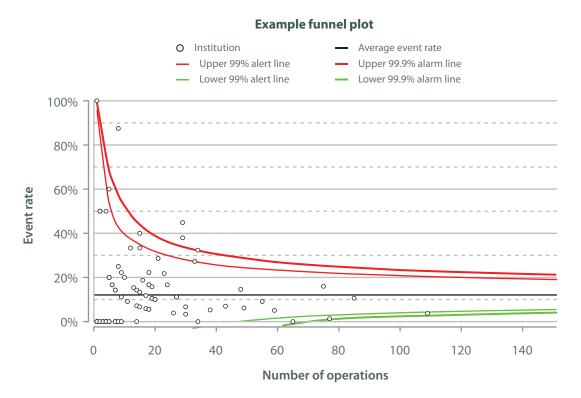
Bars around averaged values (such as patients' age, post-operative length-of-stay, etc.) are classical standard error bars or 95% confidence intervals; they give some idea of the spread of the data around the calculated average. In some analyses that employ these error bars there may be insufficient data to legitimately calculate the standard error around the average for each sub-group under analysis; rather than entirely exclude these low-volume subgroups from the chart their arithmetic average would be plotted without error bars. Such averages without error bars are valid in the sense that they truly represent the data submitted; however, they should not to be taken as definitive and therefore it is recommended that such values are viewed with extra caution.

- 1. Cleveland WS. The elements of graphing data. 1985, 1994. Hobart Press, Summit, New Jersey, USA.
- 2. Wilson EB. Probable inference, the law of succession, and statistical inference. *Journal of American Statistical Association*. 1927; **22:** 209-212

Fourth National Audit Report 2012

Funnel plots

There are, of course, many different ways to display crude outcome data. When comparing outcomes for individuals, one method would be to calculate the outcome rate for each and then rank them in ascending order of outcome rate; it is possible to place 95% confidence intervals around the calculated rate to give some indication of the confidence in that result, but this method tends to draw the eye to the upper and lower reaches of the ranking and does not easily provide information on how each clinician sits with respect to the average outcome rate.


Another method would be to determine the rank-order for the surgeons based on crude or risk-adjusted outcome rates and then plot these ranks with suitable confidence intervals around them. This method will also tend to draw attention to the extremes of the ranking and can generate spurious results.

Shewhart control charts have been suggested as a means of presenting performance in the clinical setting without having to resort to such spurious ranking into league tables. These plots show the number of observed events against the volume of cases on a square-root scale; unfortunately this format is not intuitive, obscures the observed event rate and leads to rather approximate control limits. Applying a minor adjustment to this method (plotting the event rate against the number of cases) generates the so-called funnel plot, which is widely used in meta-analyses to check for publication bias and has been used to compare mortality rates in paediatric cardiac surgery. Exact binomial control limits around the overall rate are superimposed to indicate possible thresholds for alert and alarm respectively.

Funnel plots discourage inappropriate ranking while providing a strong visual indication of divergent performance or special cause variation; they are not a cause for damnation in and of themselves. Advantages over the Shewhart control charts approach include the display of the observed event rates, an informal check on the relationship between the event rate and number of cases, an emphasis on the natural increased variability amongst small-volume centres or individuals, intuitive choice of axes (hence easy plotting) and exact binomial control limits that can be calculated using the most popular spreadsheet packages. This method is, however, not risk-adjusted, and therefore has all the problems associated with not comparing like with like.

The example funnel plot below shows an event rate for a number of institutions (which might be a country, an individual hospital, a consultant surgeon, *etc.*). Each dot represents an institution, and shows the crude event rate *versus* the number of procedures performed. The solid, horizontal black line indicates the average rate. The 99% control limits are shown as thin (green and red) lines and 99.9% limits thick (red & green) lines.

It should be obvious that transgressing the upper limits when the case-number is small is very unlikely unless the complication rate is extremely high. Using such an approach should reduce the fear of making unjustified judgements based on small numbers of cases.

Contributors

- Anna Aertssen
- Avi Agrawal
- Afzaal Ahmad
- Murat Akyol
- Munther Aldoori
- David Allen
- lain D Anderson
- Tim Archer
- Sebastian Aspinall
- Chris Ayshford
- Saba **Balasubramanian**
- Alistair **Balfour**
- Ludger Barthelmes
- Tom Bates
- Chris **Bem**
- Amir **Bhatti**
- Myles Black
- Stephen Blair
- Richard Bliss
- Victoria Brown
- Michael Burke
- Robert Carpenter
- David J Cave-Bigley
- David Chadwick
- Habib Charfare
- Louise Clark
- Richard Collins
- Luke Condon
- Rogan Corbridge
- Allan Paul Corder
- Stephen P Courtney
- Hugh **Cox**
- James N Crinnion
- David Cunliffe
- Jeremy P **Davis**
- Stuart Denholm
- Helen Doran
- Julie Doughty

- Julie Dunn
- Patricia Durning
- Fiona Eatock
- Wael Elsaify
- James England
- Abigail A Evans
- William R Fleming
- Clare Fowler
- John Frewer
- Ashu Gandhi
- Richard Garth
- Martin G **Greaney**
- Thomas G Groot-Wassink
- Andrew Guy
- Richard Halpin
- Robert Hardy
- Barney Harrison
- Micheal Harron
- Dugal Heath
- Simon **Hickey**
- Omar **Hilmi**
- Philip Holland
- Andrew Houghton
- Jonathan Hubbard
- Neil **Hulton**
- Paul **Hurley**
- Shaun Jackson
- Tony Jacob
- Taleb Jeddy
- Stephanie Jenkins
- Corinne Jones
- Nigel AG **Jones**
- Anton Joseph
- Bengt Kald
- Paul Kirkland
- Zygmunt **Krukowski**
- Vijay Kurup
- Nicholas RF Lagattolla

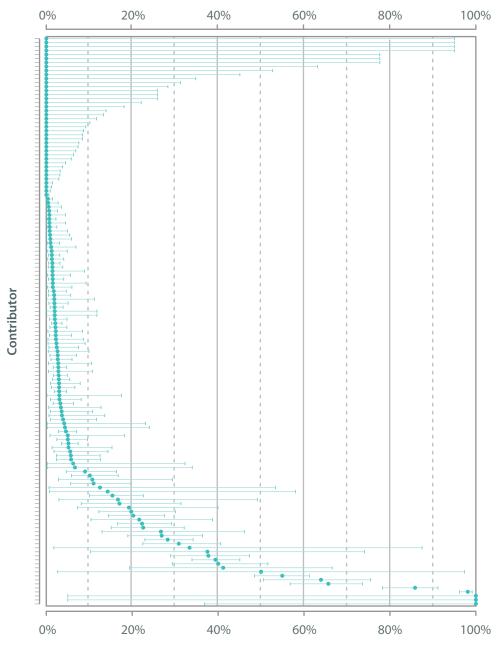
Contributors

The British Association of Endocrine and Thyroid Surgeons

Fourth National Audit Report 2012

- Mark Lansdown
- Tom WJ Lennard
- Peter Lewis
- Andrew P Locker
- John RC Logie
- M Lucarotti
- John Lynn
- Alasdair Mace
- Paul R Maddox
- Zvoru Makura
- Andrew Mccombe
- Andrew M'Irvine
- Andrew J M'Laren
- Alasdair H M^cLean-Ross
- Sandy M^cPherson
- Radu **Mihai**
- Faisal MA Mihaimeed
- Peter Moore
- Justin Morgan
- Muntzer Mughal
- lain M **Muir**
- Michael L Nicholson
- Stewart Nicholson
- Keshav Nigam
- Olawale Olarinde
- Fausto Palazzo
- Michael Papesch
- Neil R Parrott
- Neville | Ramus
- David Ratliff
- David Rew
- Keith Rigg
- Gavin T **Royle**
- Robert Ruckley
- Sarwat Sadek
- Greg Sadler
- Mrinal Saharay

- Michael Salter
- Ahmed Samy
- David Scott-Coombes
- Anup Kumar **Sharma**
- Patrick Sheahan
- Steve **Shering**
- Richard Sim
- Prakash Sinha
- Anthony Skene
- James Smellie
- David M Smith
- Raj Spence
- Paul Spraggs
- Roly Squire
- Frank Stafford
- Michael P Stearns
- Michael Stechman
- Gareth Tervit
- Martin **Thomas**
- Paul **Thomas**
- William EG Thomas
- Adrian **Thompson**
- Steven Thrush
- Neil Tolley
- Mark **Tomlinson**
- Philip **Turton**
- Charanjeit S **Ubhi**
- Alison Waghorn
- Jonathan C Watkinson
- Andrew R Welch
- Hugh Wheatley
- Michael R Williams
- Richard Windle
- Michail Winkler
- Constantinos **Yiangou**
- Charles Zammitt

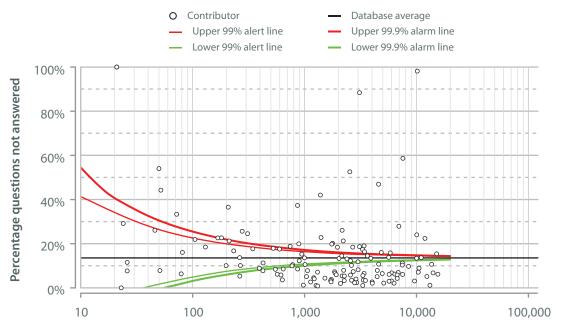

Missing data

In preparation for the use of the BAETS audit data for revalidation / appraisal purposes, details on data quality have been specifically included in this report. In particular, the extent of missing data on existing cases within the database is highlighted, and variability between members with respect to this issue.

Thyroid surgery data

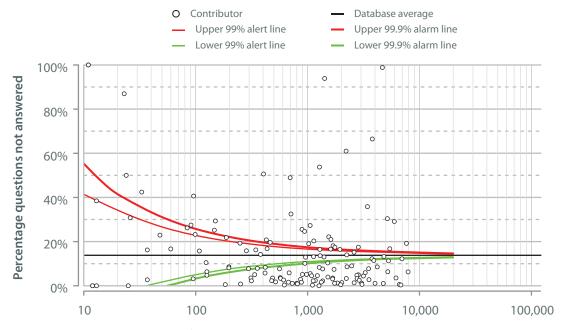
Even for simple data, such as the details of what thyroid procedure had been performed, details are incomplete in some cases, as outlined here for each individual member.

Percentage of thyroid cases without the operation type recorded


There appear to be a small number of members entering no / little information on the case, beyond date of birth, gender and endocrine case type. This dilutes the database with *uninterpretable* data and should be strongly discouraged.

Fourth National Audit Report 2012

The following two funnel plots demonstrate the variation between members with respect to completeness of data entry, expressed as the proportion of the total number of potential data points (correlated with number of questions requiring data) left unanswered. The first plot refers to completion of all data fields, whilst the second refers only to those basic data which are essential for calculation of complication rates and correlation of these with extent of surgery.

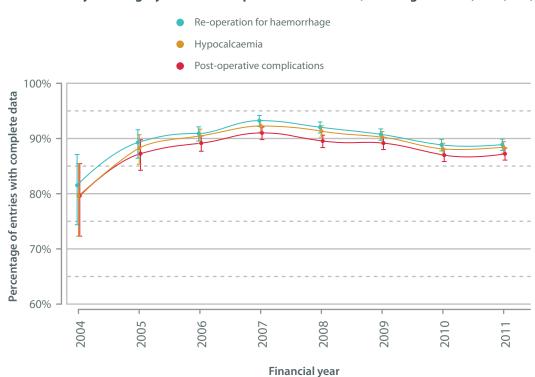

In general, there is a high rate of completion of data, but there is considerable variation between members, with a significant number falling outside the upper alarm line. Many members, however, also fall outside the lower alarm line, combining high volumes of cases with excellent rates of data completion.

Thyroid surgery: Missing data (n=18,904 entries; 466,831 questions)

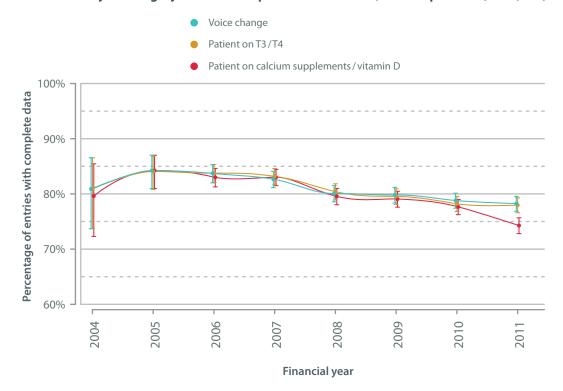
Total number of questions that require completion (logarithmic scale)

Thyroid surgery: Missing basic data (n=18,904 entries; 232,054 questions)

Total number of basic questions that require completion (logarithmic scale)

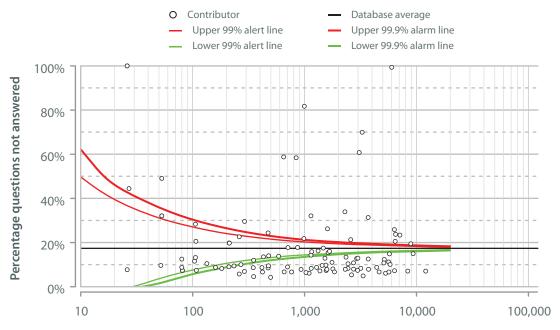


Changes in data completion over time


The following two graphs demonstrate changes in data completeness over time: the first chart is for in-patient complications, and the second for outcomes at follow-up.

Generally, in-patient complications are reported more completely than those at follow-up, with fairly stable rates of completion over time for both sets of data.

Thyroid surgery: Rates of complete data over time; follow up details (n=18,548)

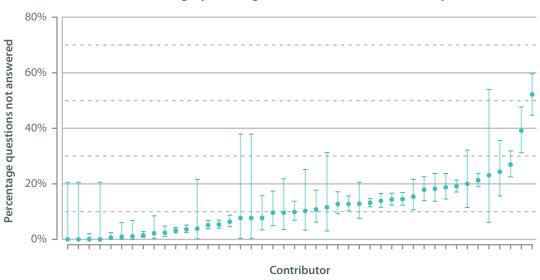

Fourth National Audit Report 2012

Parathyroid surgery data

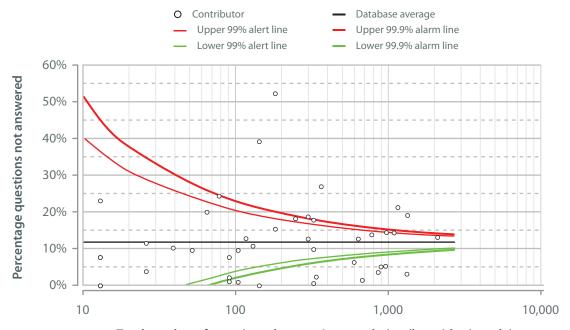
Data completeness for parathyroid surgery shows a similar pattern to that for thyroid surgery.

Parathyroid surgery: Missing data (n=8,619 entries; 227,804 questions)

Total number of questions that require completion (logarithmic scale)



Fourth National Audit Report 2012


Adrenal surgery data

For adrenal surgery, overall rates of data completeness are marginally higher, perhaps reflecting the smaller number of fields requiring completion. Variation between members, however, remains a significant issue.

Adrenal surgery: Missing data (n=1,359 entries; 16,672 questions)

Adrenal surgery: Missing data (n=1,359 entries; 16,672 questions)

Total number of questions that require completion (logarithmic scale)

Missing data

The British Association of Endocrine and Thyroid Surgeons

Fourth National Audit Report 2012

Summary

The extent of missing data for all endocrine case types is of some concern.

For thyroidectomy, even the most basic data that would allow simple calculation of complication rates are missing in over 10% of cases on average. Some data fields, potentially useful for more complex analyses such as for risk-adjustment of complication rates, are incomplete in a much higher proportion than this. Similar rates of missing data are also seen for parathyroid and adrenal cases.

There appears to be enormous variation between individual surgeons with respect to their rate of missing data. Some enthusiasts achieve well above average rates of data completeness, some at or close to 100% complete and these surgeons are to be congratulated. Others, however, have high rates of incomplete entries, occasionally close to zero percent.

This variation does not appear to be due to surgeon-volume, with many of the *highest volume surgeons* represented amongst the *enthusiasts*, despite the larger number of cases requiring data entry. *Audit fatigue* over time also does not appear to explain this divergence, as rates of incomplete data entry are stable over the last 5-6 years. However, data entry for outcomes at follow-up is less complete than for outcomes at discharge, reflecting the increased effort required to obtain these data and update the case entry.

This particular issue, and methods to improve data entry, should be debated amongst the membership. Methods may include:

- Open publishing of members' rates of complete data.
- Identification of those high-volume surgeons with high rates of complete data, with a view to sharing their methodology for successful and comprehensive data acquisition.
- Adding to the existing requirements for BAETS membership (entry of ≥30 cases per year) an additional need to achieve a given proportion of complete entries.
- Changes to the database, to prevent cases being logged until certain basic fields are complete.

Surgery for thyroid disease

Surgery for thyroid disease

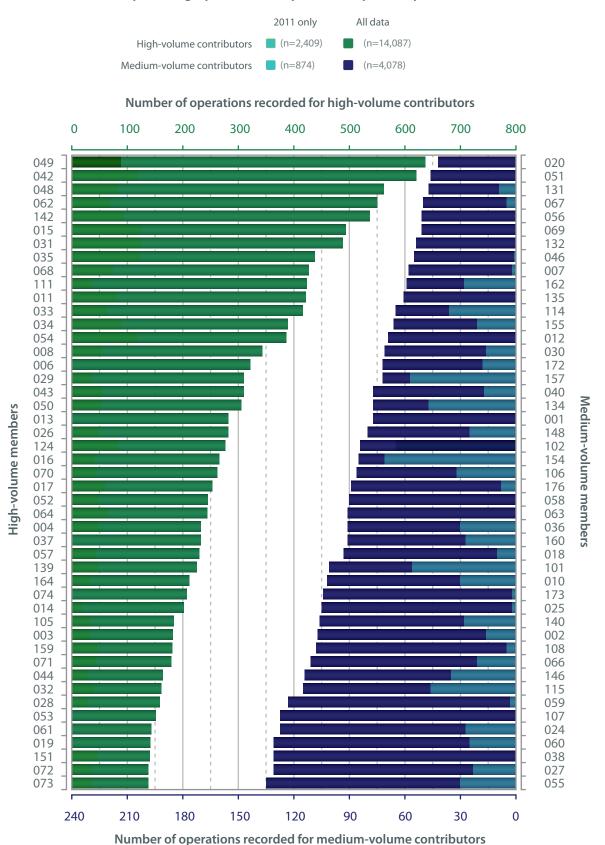
General information from the database

Number of members

The rate of expansion of the database continues to increase, partly due to an increase in new membership, and partly due to increased / new participation from existing members. This latter may also reflect the stipulated requirement to enter at least 30 endocrine cases *per* year in order to remain an active member of the Association.

Fewer thyroid operations are performed in each December compared to the rest of the year, which is perhaps not surprising, given the reduction in operating time over the holiday period and the elective nature of thyroid surgery.

There are a total of 18,904 cases submitted by 142 members.


The growth of the database month by month (n=18,904 thyroid cases)

Fourth National Audit Report 2012

Thyroid surgery: Number of operations reported by each member

There are data from 48 lower-volume contributors not included in this chart, who submitted a total 739 cases (average = 15.4 cases per member).

Fourth National Audit Report 2012

Demographics and disease profile

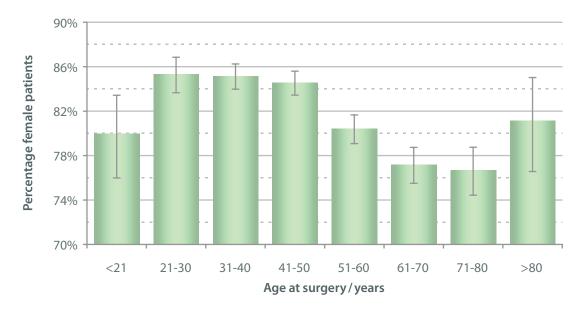
Age

There has been no change in demographic profile over time. As expected, the majority of thyroid surgery is carried out on *middle aged* patients, and there is a strong female predominance (Female: Male ratio 4.58:1).

Basic age statistics according to gender

	Count	Average	Standard deviation	10 th percentile	Lower quartile	Median	Upper quartile	90 th percentile
Male	3,385	50.9	16.3	30.0	39.0	51.0	63.0	72.0
Female	15,513	48.0	15.7	28.0	37.0	47.0	59.0	70.0
All patients	18,898	48.5	15.9	28.0	37.0	48.0	60.0	70.0

Fourth National Audit Report 2012



Age & gender

Thyroid surgery: age and gender distributions

				Gender		
		Male	Female	Unspecified	All	Proportion female
ars	<21	94	375	0	469	80.0%
	21-30	285	1,657	0	1,942	85.3%
	31-40	571	3,273	0	3,844	85.1%
/ ye	41-50	682	3,733	0	4,415	84.6%
surgery/years	51-60	726	2,978	0	3,704	80.4%
surç	61-70	606	2,047	0	2,653	77.2%
at	71-80	355	1,166	0	1,521	76.7%
Age	>80	66	284	0	350	81.1%
	Unspecified	1	5	0	6	83.3%
	All	3,386	15,518	0	18,904	82.1%

Thyroid surgery: Age and gender (n=18,898)

Fourth National Audit Report 2012

Primary pathology

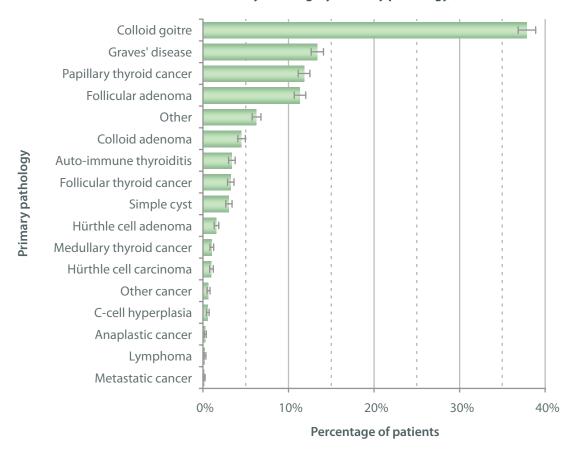
Primary pathology for all patients

Since October 2008 primary pathology has been identified separately to secondary/incidental pathology.

As expected, the majority of thyroid surgery is carried out for benign indications, particularly for Colloid/Multinodular Goitre and Graves' disease.

Of all operations, malignancy was the primary diagnosis in 15.6% of cases, while any neoplasia (including C-cell hyperplasia) accounted for 27.0%.

The rate of missing data for this field is 14.7%, representing a degree of improvement since the Third National Report in 2009, when the rate was 26.0%.


Thyroid surgery: primary pathology; data accumulated after the first revision of the registry

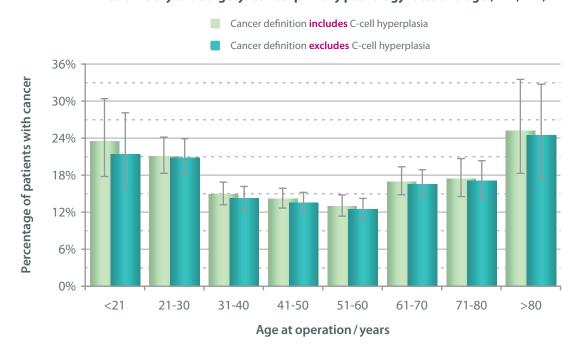
		Da	nta
		Count	Proportion
	Anaplastic cancer	22	0.3%
	Auto-immune thyroiditis	293	3.4%
	C-cell hyperplasia	47	0.5%
	Colloid adenoma	392	4.5%
	Colloid goitre	3,304	37.9%
	Follicular adenoma	988	11.3%
	Follicular thyroid cancer	282	3.2%
ogy	Graves' disease	1,165	13.4%
Primary pathology	Hürthle cell adenoma	136	1.6%
/ pa	Hürthle cell carcinoma	85	1.0%
nary	Lymphoma	19	0.2%
Prin	Metastatic cancer	12	0.1%
	Medullary thyroid cancer	88	1.0%
	Papillary thyroid cancer	1,030	11.8%
	Simple cyst	263	3.0%
	Other cancer	55	0.6%
	Other	545	6.2%
	Unspecified	1,498	
	All	10,224	

Fourth National Audit Report 2012

Thyroid surgery: Primary pathology (n=8,726)

Fourth National Audit Report 2012

Cancer at first operation


Cancer and age

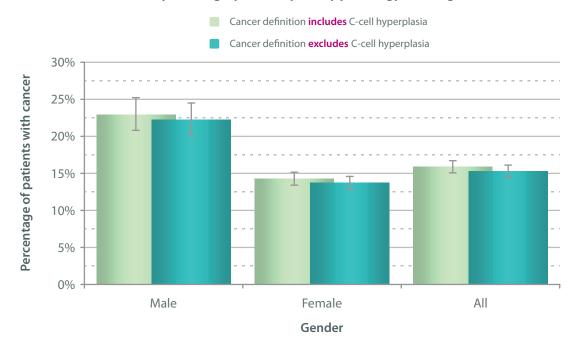
The incidence of thyroid cancer would be expected to follow a bimodal distribution, with peak frequency in children/adolescents and in individuals over 60 years of age. This distribution is more apparent in the present compared to the 2009 report.

First-time thyroid surgery: cancer at the time of the patient's operation and age; data accumulated after the first revision of the registry

		Cancer							
			C-cell hyperplasia included in the definition of cancer			C-cell hy	perplasia definition		
		0 Z	Yes	Unspecified	Percentage	o N	Yes	Unspecified	Percentage
	<21	143	44	19	23.5%	147	40	19	21.4%
	21-30	610	163	89	21.1%	612	161	89	20.8%
ars	31-40	1,281	225	153	14.9%	1,291	215	153	14.3%
surgery/years	41-50	1,614	267	205	14.2%	1,626	255	205	13.6%
Jer)	51-60	1,335	199	152	13.0%	1,343	191	152	12.5%
surc	61-70	910	186	96	17.0%	915	181	96	16.5%
at	71-80	508	107	52	17.4%	510	105	52	17.1%
Age	>80	101	34	12	25.2%	102	33	12	24.4%
	Unspecified	1	2	0	66.7%	2	1	0	33.3%
	All	6,503	1,227	778	15.9%	6,548	1,182	778	15.3%

First-time thyroid surgery: Cancer primary pathology rates and age (n=7,727)

Fourth National Audit Report 2012


Cancer and gender

As seen in the 2009 report, the ratio of malignant: benign disease is higher in males than females, with over 1 in 5 thyroidectomies in men being performed for cancer. This is expected, given the much lower incidence of benign thyroid disease in males.

First-time thyroid surgery: cancer at the time of the patient's operation and gender; data accumulated after the first revision of the registry

		Cancer							
		C-cell hyperplasia included in the definition of cancer			-	perplasia definition	excluded from the of cancer		
		O _N	Yes	Unspecified	Percentage	0 N	Yes	Unspecified	Percentage
	Male	1,105	329	144	22.9%	1,115	319	144	22.2%
der	Female	5,398	898	634	14.3%	5,433	863	634	13.7%
Gender	Unspecified	0	0	0	NA	0	0	0	NA
	All	6,503	1,227	778	15.9%	6,548	1,182	778	15.3%

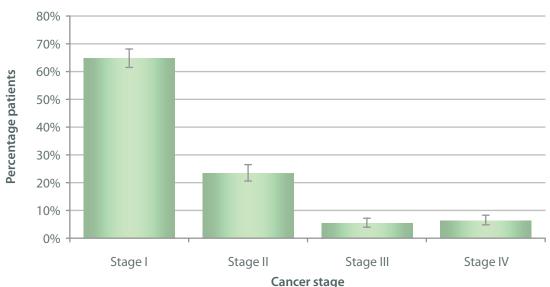
First-time thyroid surgery: Cancer primary pathology rates & gender (n=7,730)

Fourth National Audit Report 2012

Cancer and staging


As detailed above (in the *Basic principles* section), there has been a change in the database, adopting TNM version 7 in preference to version 5, from November 2010.

As expected, overall cancer stage is I or II for the large majority of cases.


For N-stage the distribution of cases between N0 or NX categories may not be completely reliable, as 76% of those categorised as N0 did not undergo nodal dissection at the first operation, although a proportion of these may have proceeded to nodal surgery at a second operation and nodal status entered retrospectively.

Where the primary pathology is PTC and nodal dissection has been recorded, around 50% are N0, implying that these dissections were *prophylactic* in intent. Distinction between therapeutic and prophylactic intent is not possible for the cases recorded as N1.

First-time thyroid surgery: Cancer TNM staging

First-time thyroid surgery: Overall cancer stage (n=820)

Fourth National Audit Report 2012

Laterality of nodal surgery

When recorded, nodal dissection was not performed in over 50% of cases, again implying that a higher proportion of the cases allocated to N0 in the above graphs should technically be NX.

When nodal dissection was performed, it was bilateral in most cases, as expected because many were level 6 dissections (alone or in combination with other compartments).

First-time thyroid surgery for cancer where the side of the operation is known: node dissection; data accumulated after the first revision of the registry

		Node dissection: right					
		No	Yes	Unspecified	All		
.iio	No	637	102	20	759		
Node dissection: left	Yes	75	312	2	389		
	Unspecified	14	4	12	30		
No	All	726	418	34	1,178		

Fourth National Audit Report 2012

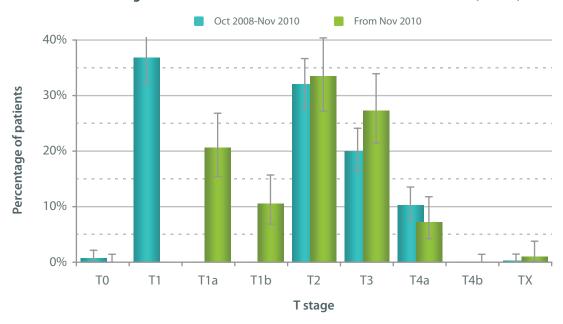
T stage

Overall T stage has been quite stable over time. A slight increase in T3 tumours at the expense of T4 is likely to represent the differences between TNM Versions 5 and 7 in assessing the degree of extra-thyroidal extension: in version 7 minimal extra-thyroidal disease is recorded as T3, whereas in version 5 any such extension represents T4.

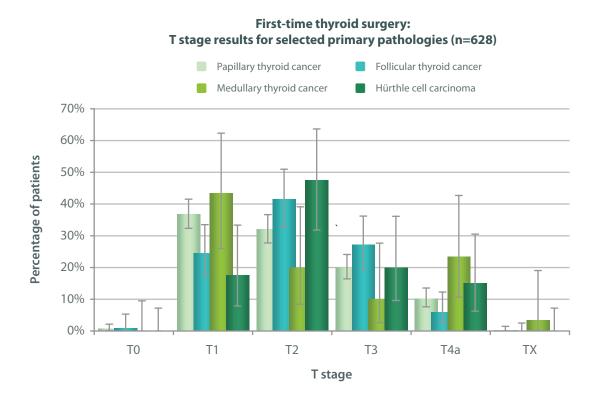
There does not appear to have been a large increase in T1 tumours over the lifetime of the database. The data therefore do not suggest an increasing rate of cancer diagnoses secondary to detection of incidental microcarcinomas. This will be easier to follow in future, as in TNM version 7, micro-carcinomas are represented by stage T1a. Since November 2010, these cases account for 26% of those where T-stage was recorded.

First-time thyroid surgery: T stage data

		Versions of the BAETS database					
		TNM ve	ersion 5 -Oct 2008		ersion 5 -Nov 2010		ersion 7 10-Date
		Count	Percentage	Count	Percentage	Count	Percentage
	ТО	20	2.2%	4	0.6%	0	0.0%
	T1	332	35.8%	215	33.0%	NA	NA
	T1a	NA	NA	NA	NA	93	26.2%
	T1b	NA	NA	NA	NA	33	9.3%
e l	T2	320	34.5%	221	33.9%	109	30.7%
stage	T3	150	16.2%	134	20.6%	91	25.6%
Ë	T4a	102	11.0%	76	11.7%	20	5.6%
	T4b	NA	NA	NA	NA	6	1.7%
	TX	4	0.4%	2	0.3%	3	0.8%
	Unspecified	6,683		5,225		2,276	
	All	7,611		5,877		2,631	


Fourth National Audit Report 2012

First time thyroid surgery for papillary thyroid cancer: T stage results for the various iterations of the BAETS database (n=649)

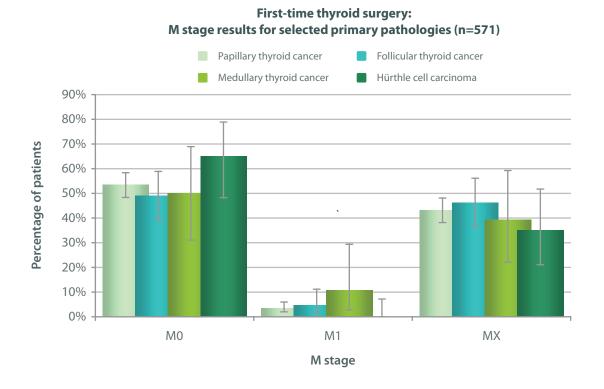


Fourth National Audit Report 2012

Amongst differentiated thyroid cancers, there is some evidence of a shift in T stage distribution towards more advanced disease in the order Hürthle cell carcinoma > follicular thyroid cancer > papillary thyroid cancer. This is consistent with the known biology of these diseases.

Likewise, the higher incidence of locally advanced disease (T4a) with medullary carcinoma is perhaps not surprising.

Fourth National Audit Report 2012


N and M Stage

Most Follicular and Hürthle-cell carcinomas are recorded as N0 or NX, reflecting the low rate of node dissection performed for these pathologies. More extensive nodal involvement is recorded for medullary than for papillary cancer, perhaps reflecting both cancer biology and the relative frequency of prophylactic nodal surgery performed for these types of malignancy.

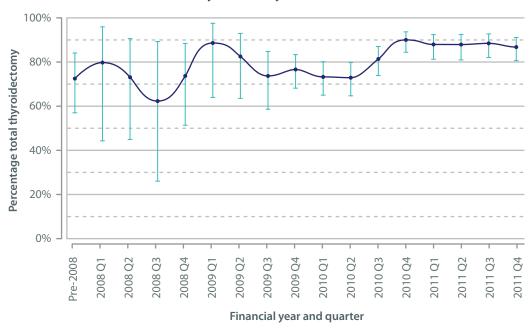
A higher proportion of medullary cancer is recorded as M1 stage at the time of primary surgery.

First-time thyroid surgery: N stage results for selected primary pathologies (n=599) Papillary thyroid cancer Follicular thyroid cancer Medullary thyroid cancer Hürthle cell carcinoma 90% 80% 70% Percentage of patients 60% 50% 40% 30% 20% 10% 0% N0 N₁b NXN₁ N₁a

N stage

Fourth National Audit Report 2012

Surgery for thyrotoxicosis


Thyroid status and operation

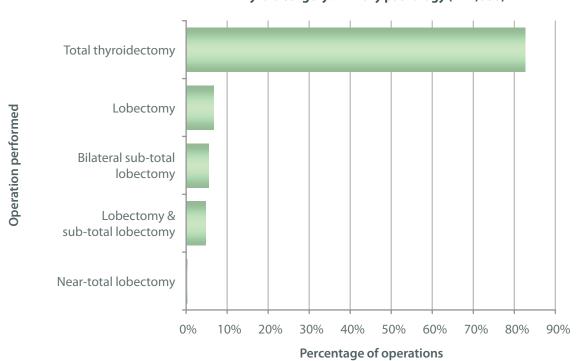
There has been an increasing trend away from the traditional bilateral subtotal thyroidectomy for treating thyrotoxicosis, in favour of total/near-total resection. Where thyrotoxicosis is the indication for surgery, total thyroidectomy is currently performed in almost 90% of cases.

Thyroid surgery for thyrotoxicosis: thyroid status at presentation and operation performed; data accumulated after the first revision of the registry

			Oper	ation	
		Less than total thyroidectomy	Total thyroidectomy	Unspecified	Rate of total thyroidectomy
sn	Euthyroid	63	287	49	82.0%
statı	Hyperthyroid	187	893	59	82.7%
	Hypothyroid	2	5	0	71.4%
Thyroid	Unspecified	2	9	16	81.8%
F	All	254	1,194	124	82.5%

Thyroid surgery for thyrotoxicosis: Total thyroidectomy rates over time (n=1,448)

Fourth National Audit Report 2012



Hyperthyroidism and operation

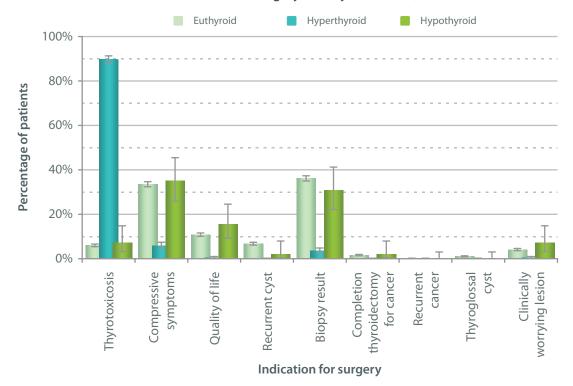
Thyroid surgery for patients with hyperthyroidism whose indication for surgery was thyrotoxicosis: operation performed; data accumulated after the first revision of the registry

		Data		
		Count	Proportion	
D	Total thyroidectomy	893	82.7%	
rme	Lobectomy & sub-total thyroidectomy	51	4.7%	
performed	Lobectomy	73	6.8%	
	Bilateral sub-total lobectomy	60	5.6%	
peration	Near-total lobectomy	3	0.3%	
per	Unspecified	59		
0	All	1,139		

Thyroid surgery: Primary pathology (n=1,080)

Fourth National Audit Report 2012

Surgery for euthyroid / hypothyroid patients

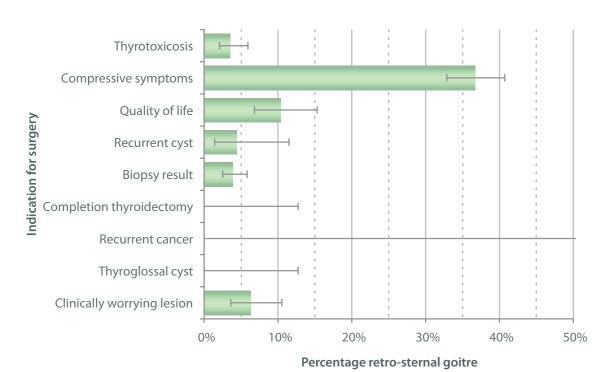

For euthyroid patients, the commonest indications for surgery are biopsy result (36%), compressive symptoms (34%) and quality of life (11%). *Clinically worrying lesion* is a relatively new field, but accounts for an increasing proportion of cases since its introduction in 2010 (in 2011, accounting for 11% of cases in the database where the indication is recorded). A similar distribution is seen for those patients who were hypothyroid pre-operatively.

Those 393 cases with euthyroid pre-operative status who underwent surgery for thyrotoxicosis probably represent cases who were thyrotoxic at presentation, but where euthyroid pre-operative status has been entered, due to control of toxicosis by medical therapy in preparation for surgery. Goitre type (retro-sternal *versus* cervical) is also a relatively new data field, but despite this it is clear that the predominant indication for surgery in retro-sternal goitre is compressive symptoms (74% compared to 20% for cervical goitre).

First-time thyroid surgery: indication for surgery and thyroid status; data accumulated after the first revision of the registry

		Thyroid status					
		Euthyroid	Hyperthyroid	Hypothyroid	Unspecified		
	Thyrotoxicosis	393	1,123	7	24		
	Compressive symptoms	2,199	74	34	27		
	Quality of life	709	5	15	13		
ڌ	Recurrent cyst	442	0	2	9		
Indication	Biopsy result	2,371	45	30	33		
dic	Completion thyroidectomy for cancer	103	0	2	0		
=	Recurrent cancer	7	0	0	0		
	Thyroglossal cyst	67	0	0	4		
	Clinically worrying lesion	269	5	7	1		
	Unspecified	413	37	12	26		

First-time thyroid surgery: Indication for surgery and thyroid status (n=7,628)


Fourth National Audit Report 2012

First-time thyroid surgery: indication for surgery and goitre type; data accumulated after the second revision of the registry

		Goitre					
		Cervical	Retro-sternal	Unspecified	All		
	Thyrotoxicosis	406	15	69	490		
	Compressive symptoms	381	221	48	650		
	Quality of life	199	23	120	342		
	Recurrent cyst	87	4	8	99		
ion	Biopsy result	572	23	47	642		
Indication	Completion thyroidectomy for cancer	22	0	3	25		
Ind	Recurrent cancer	1	0	1	2		
	Thyroglossal cyst	22	0	9	31		
	Clinically worrying lesion	209	14	52	275		
	Unspecified	35	5	35	75		
	All	1,934	305	392	2,631		

First-time thyroid surgery: Indication for surgery in relation to goitre type (cervical or retrosternal; n=2,199)

Fourth National Audit Report 2012

Investigations

Pre-operative laryngoscopy for first time operations

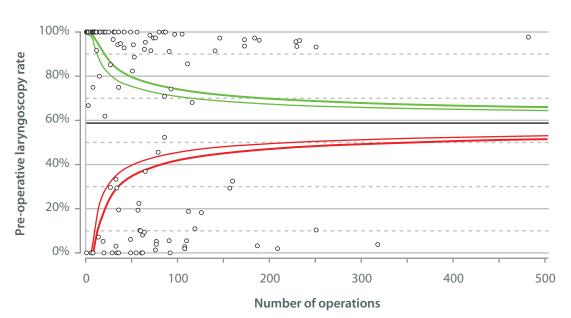
Over the life of the database, 60.9% of patients were recorded as undergoing a pre-operative laryngoscopy before a first-time operation. The rates in the last three financial years (2009, 2010, 2011) were 61.9%, 55.5% and 57.7% respectively.

A greater proportion of patients with thyroid cancer underwent laryngoscopy compared to the patients with benign disease (57.9% *versus* 64.7%; p<.0001).

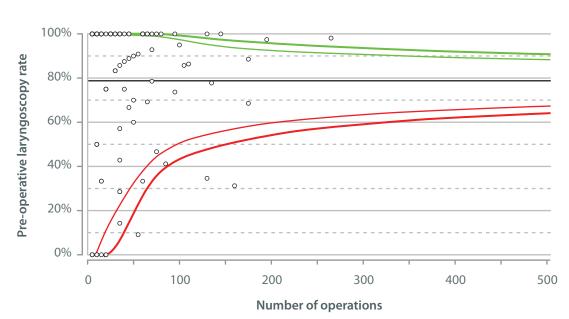
Pre-operative laryngoscopy for re-operative cases

For operations on the same side as the previous procedure, the pre-operative laryngoscopy rate is 86.7% (202/233 entries; no unknowns).

It seems clear that there is no consensus on the use of laryngoscopy pre-operatively, with variation in practice between 0% and 100% for first-time surgery.


It remains of concern that this variation also exists for re-operative thyroid surgery, despite BAETS guidelines suggesting universal usage in such cases, and this issue having being raised in previous audit reports.

Fourth National Audit Report 2012


First-time thyroid surgery: Pre-operative laryngoscopy rates (n=8,378)

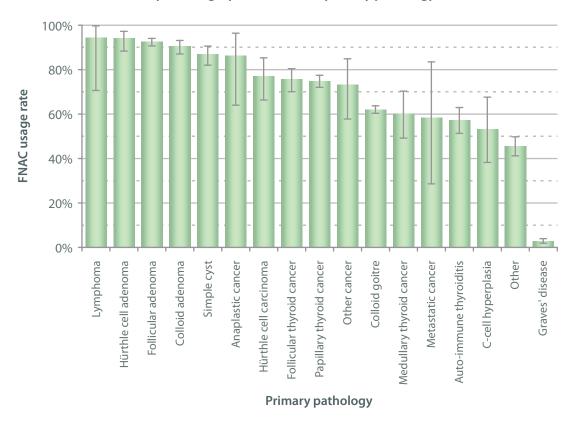
Re-operative surgery thyroid surgery: Pre-operative laryngoscopy rates (n=953)

Fourth National Audit Report 2012

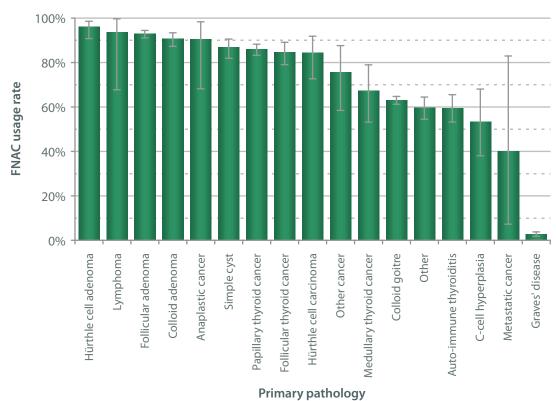
Fine Needle Aspiration Cytology (FNAC)

Overall use of FNAC has changed little since the Third Report in 2009. For all neoplasms undergoing surgery FNAC was utilised in 2,204/2,685 = 82.1% (compared to 81.8% in 2009), and for cancer the rate was 1,169/1,569 = 74.5% (73.9% in 2009).

However, upon analysis of the indication for surgery in cancer cases, it is apparent that for papillary and follicular cancer cases where no pre-operative FNAC was undertaken, around 59% were completion lobectomies, implying that the cancer diagnosis had been made at a previous procedure. For first-time thyroidectomy, the rate of FNAC usage becomes 86% for both these cancer subtypes. For other cases the diagnosis may also have been made by wide bore core needle biopsy of a lymph node. Overall, therefore, the results suggest that FNAC is being used appropriately.


In contrast, for medullary cancers not undergoing FNAC the main indications for surgery are biopsy result and recurrence: presumably most of these are diagnosed by means other than FNAC, perhaps wide-bore needle biopsy (not recorded in this audit).

Thyroid surgery: primary pathology and the use of FNAC; data accumulated after the first revision of the registry

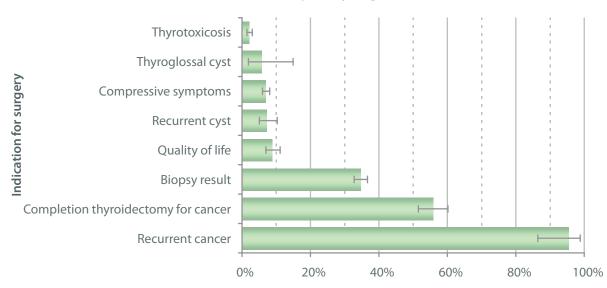

				FNAC usage				
		No	Yes	Unspecified	All	Rate		
	Anaplastic cancer	3	19	0	22	86.4%		
	Auto-immune thyroiditis	124	166	3	293	57.2%		
	C-cell hyperplasia	22	25	0	47	53.2%		
	Colloid adenoma	37	353	2	392	90.5%		
	Colloid goitre	1,235	2,020	49	3,304	62.1%		
	Follicular adenoma	73	907	8	988	92.6%		
	Follicular thyroid cancer	68	211	3	282	75.6%		
Primary pathology	Graves' disease	1,090	31	44	1,165	2.8%		
th ol	Hürthle cell adenoma	8	128	0	136	94.1%		
/ pa	Hürthle cell carcinoma	19	64	2	85	77.1%		
nar)	Lymphoma	1	17	1	19	94.4%		
Prin	Metastatic cancer	5	7	0	12	58.3%		
	Medullary thyroid cancer	35	53	0	88	60.2%		
	Papillary thyroid cancer	257	765	8	1,030	74.9%		
	Simple cyst	34	225	4	263	86.9%		
	Other cancer	12	33	10	55	73.3%		
	Other	294	245	6	545	45.5%		
	Unspecified	317	546	635	1,498	63.2%		
	All	3,634	5,815	775	10,224	61.5%		

Surgery for thyroid disease

Thyroid surgery: FNAC use and primary pathology (n=8,586)

First time thyroid surgery: FNAC use and primary pathology (n=7,681)

Fourth National Audit Report 2012


Cancer and indication for surgery

The data relating cancer diagnosis to indication for surgery are very similar to those in the 2009 report. There is a small, but significant, risk of a primary cancer diagnosis in recurrent cysts, thyroglossal cysts and patients with compressive symptoms.

Thyroid surgery: indication for surgery and primary diagnosis of cancer ¹; data accumulated after the first revision of the registry

		Primary diagnosis of cancer					
		No	Yes	Unspecified	Rate		
	Thyrotoxicosis	1,407	30	135	2.1%		
	Compressive symptoms	2,182	163	228	7.0%		
on for surgery	Quality of life	701	68	15	8.8%		
	Recurrent cyst	395	31	36	7.3%		
	Biopsy result	1,527	811	279	34.7%		
	Completion thyroidectomy for cancer	232	294	57	55.9%		
Indication	Recurrent cancer	3	63	4	95.5%		
Ind	Thyroglossal cyst	65	4	4	5.8%		
	Unspecified	593	157	740	20.9%		
	All	7,105	1,621	1,498	18.6%		

Thyroid surgery: Indication for surgery and primary diagnosis of cancer (n=7,976)

Percentage of patients with a primary diagnosis of cancer

Fourth National Audit Report 2012

Surgery for thyroid disease

Fourth National Audit Report 2012

FNAC result and pathology

The distribution of FNAC results by primary diagnosis is similar to the 2009 report.

As expected, the commonest FNAC result for follicular (including Hürthle cell) neoplasms was C3.

In those cases undergoing surgery where an FNAC was performed, a C3-5 result was obtained in:

- 81% of papillary cancers.
- 76% of follicular cancers.
- 94% of medullary cancers.

However, a definitive C5 result was obtained in only:

- 34% of papillary cancers
- 55% of medullary cancers

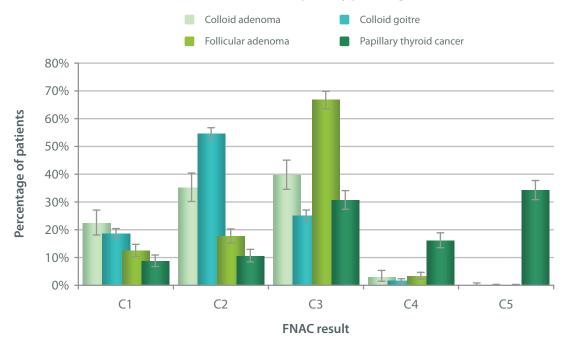
The C1 (*inadequate*) rate overall is stable over time (16.4% of operated patients, compared to 16.9% in 2009 report), but is lower in cancer cases (8.8%).

Amongst operated cancer cases, a C2 FNAC was obtained in 10.6%, implying other indications for surgery existed.

Excluding C-cell hyperplasia cases, the rates of cancer diagnoses amongst the 5 FNAC categories (where recorded) were:

• C5 = 98.2% (329/335)

• C4 = 63.4% (184/290)


• C3 = 21.5% (416/1,933)

• C3 (all neoplasia) = 57.0% (1,102/1,933)

• C2 = 7.1% (122/1,714)

• C1 = 11.5% (101/880)

Thyroid surgery patients investigated by FNAC: FNAC results for selected primary pathologies (n=3,976)

Fourth National Audit Report 2012

These figures are remarkably close to the malignancy risk estimates for thyroid cytology categories quoted by the Royal College of Pathologists' latest guidelines (Royal College of Pathologists Guideline G089: Guidance on the reporting of thyroid cytology specimens 2009; available at www.rcpath.org). It should be noted, however, that they do not equate to the true positive/negative predictive values of each category, as non-operated cases are not included in the audit.

The C3-5 rate for auto-immune thyroiditis remains higher than for colloid goitre (59.1% *versus* 26.8%, p<0.001), potentially leading to unnecessary surgery.

Thyroid surgery: primary pathology and FNAC result for patients whose disease was investigated by FNAC; data accumulated after the first revision of the registry

		FNAC result 1						
		C1	C2	C3	C4	C5	Unspecified	All
	Anaplastic cancer	2	1	1	4	11	0	19
	Auto-immune thyroiditis	22	45	85	12	0	2	166
	C-cell hyperplasia	3	9	12	0	1	0	25
	Colloid adenoma	78	123	139	10	0	3	353
	Colloid goitre	368	1,077	496	33	1	45	2,020
	Follicular adenoma	111	158	599	29	0	10	907
	Follicular thyroid cancer	25	26	123	27	9	1	211
Primary pathology	Graves' disease	6	8	16	0	0	1	31
thol	Hürthle cell adenoma	10	16	87	11	1	3	128
/ pa	Hürthle cell carcinoma	2	7	39	11	5	0	64
nary	Lymphoma	2	4	4	4	3	0	17
Prin	Metastatic cancer	1	0	1	2	3	0	7
	Medullary thyroid cancer	2	1	11	8	27	4	53
	Papillary thyroid cancer	65	79	231	121	258	11	765
	Simple cyst	131	72	12	0	1	9	225
	Other cancer	2	4	6	7	13	1	33
	Other	53	93	83	11	3	2	245
	Unspecified	49	155	249	31	30	32	546
	All	932	1,878	2,194	321	366	124	5,815

- 1. FNAC results are defined as:
- C1 Non-diagnostic.
- C2 Non-neoplastic.
- C3 Follicular lesions / neoplasia cannot be excluded.
- C4 Abnormal; suspicious of malignancy.
- C5 Malignant.

Fourth National Audit Report 2012

Multi-disciplinary team (MDT) meeting

There are a number of pathways by which cases may be referred for discussion at the Thyroid Cancer MDT, either prior to and / or following thyroid surgery. These are summarised for the majority of cases in the following flow diagram opposite.

Where there is a final diagnosis of cancer, it is reassuring to note that post-operative discussion at an MDT is practically universal (first-time surgery: 98.6%; n=1,033; 95% CI: 97.7-99.2%; all surgery for cancer: 98.7%; n=1,367; 95% CI: 97.9-99.2%).

However, MDT discussion prior to surgery occurs in only about half of cases with a final primary diagnosis of cancer. It would seem that this much lower rate of MDT referral is predominantly due to the limitations of non-operative (FNAC) diagnosis.

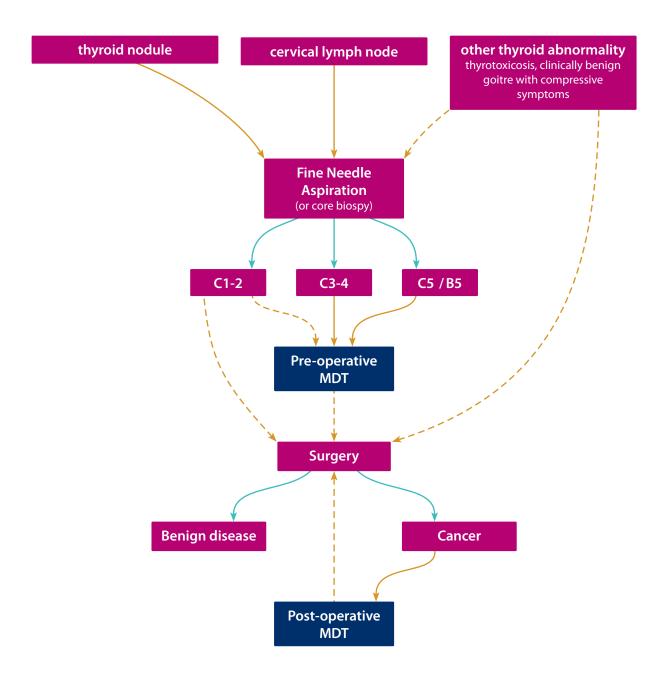
National (BTA) guidelines suggest that all C5 aspirates are discussed at the MDT to ratify an appropriate course of action prior to surgery being undertaken. The fact that only 82% of those cancers having C5 FNAC were discussed pre-operatively at the MDT is therefore of some concern.

Guidelines are not prescriptive regarding pre-operative MDT discussion for C3-4 aspirates, but given the influence of such pre-operative discussion on primary total thyroidectomy rates for cancer, detailed later in this report, it is possible that a stronger case could be made for this to occur.

The apparent relatively low rate of MDT discussion prior to completion thyroidectomy for cancer may be a true reflection of such discussion or a problem with the terminology of this data field (as it refers to MDT discussion prior to the first operation, which might be taken to mean the previous diagnostic procedure).

Thyroid surgery for patients with cancer: pre-operative MDT discussion and FNAC results & selected indications for surgery; data accumulated after the first revision of the registry

			Pre-operative MDT					
			No	Yes	Unspecified	Rate (95% CI)		
	for patients with cancer	No FNAC	167	169	85	50.3% (44.8-55.8%)		
		FNAC result C1	65	22	15	25.3% (16.8-35.9%)		
		FNAC result C2	85	14	28	14.1% (8.2-22.9%)		
		FNAC result C3	227	149	48	39.6% (34.7-44.8%)		
_		FNAC result C4	55	103	22	65.2% (57.2-72.5%)		
cto		FNAC result C5	52	232	43	81.7% (76.6-85.9%)		
re fa		FNAC result unspecified	4	9	4	69.2% (38.9-89.6%)		
ativ	AC fe	All investigated via FNAC	488	529	160	52.0% (48.9-55.1%)		
bei	FNAC	Unspecified	5	5	13	50.0% (20.1-79.9%)		
Pre-operative factor		All patients with cancer	660	703	258	51.6% (48.9-54.3%)		
_	Indication	Biopsy result	293	416	102	58.7% (54.9-62.3%)		
		Completion thyroidectomy	106	156	32	59.5% (53.3-65.5%)		
		Recurrent cancer	4	40	19	90.9% (77.4-97.0%)		
		Clinically worrying lesion	39	27	6	40.9% (29.2-53.7%)		
		All patients with cancer	660	703	258	51.6% (48.9-54.3%)		


Fourth National Audit Report 2012

Flow diagram illustrating potential routes of referral to Thyroid Cancer MDT pre- and post-operatively

Recommended or most frequent routeAlternative or potential outcomes

Result of investigation or surgery

Fourth National Audit Report 2012

Operation

All operations

Operations for thyroid cancer

The large majority of patients with a primary cancer diagnosis undergo either lobectomy or total thyroidectomy. One limitation of the audit design is the inability to follow individual patients longitudinally, if more than one procedure is performed. This makes assessment of the total number of cases ultimately having either primary total thyroidectomy (single procedure) or completion thyroidectomy impossible. *Completion thyroidectomy for cancer* remains, however, a sufficiently frequent indication for lobectomy that it is likely that the majority of cancer cases are treated in this way.

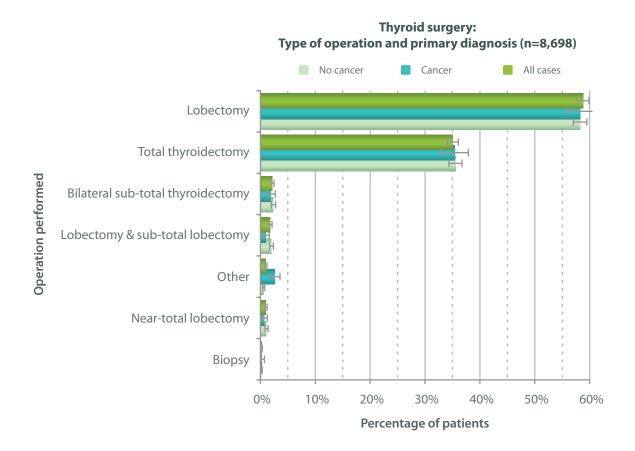
The data below, and in previous sections, cumulatively suggest that:

The low rate of primary total thyroidectomy for papillary, and even more particularly for follicular/Hürthle cell cancers, is largely due to the limitations of definitive pre-operative (FNAC) diagnosis. When FNAC is C5, then, at least for PTC, almost all undergo primary total thyroidectomy.

The higher rate of primary total thyroidectomy for medullary cancer may also be partly due to its higher definitive pre-operative FNAC diagnosis rate.

For PTC, other factors that clearly influence primary total thyroidectomy rates are:

- Tumour size.
- Other known risk factors e.g., age, gender.
- Pre-operative MDT discussion if FNAC is equivocal (C3-4).

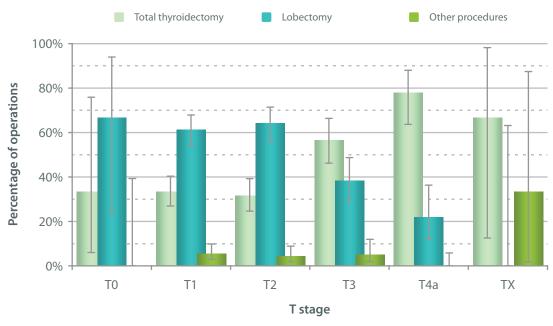

Such discussion appears to more than double the likelihood of primary total thyroidectomy for PTC. This may reflect either the utility of the MDT discussion itself or that other factors not recorded in this audit (e.g., imaging results) that impinge on the decision regarding extent of thyroidectomy may also increase the chance of a case being discussed at the MDT prior to surgery.

Thyroid surgery: operation performed and primary diagnosis; data accumulated after the first revision of the registry

		Primary diagnosis of cancer 1					
		No	Yes	Unspecified	All		
Operation performed	Total thyroidectomy	2,254	532	264	3,050		
	Lobectomy & sub-total thyroidectomy	126	14	17	157		
	Lobectomy	3,695	876	547	5,118		
erfo	Bilateral sub-total lobectomy	149	28	9	186		
n pe	Near-total lobectomy	69	10	6	85		
atio	Biopsy	11	4	2	17		
Opera	Other	37	39	9	85		
	Unspecified	764	118	644	1,526		
	All	7,105	1,621	1,498	10,224		

Fourth National Audit Report 2012

At first sight, there appears little difference in the extent of surgery between benign and malignant cases. However, as discussed above, for many of the cancer cases undergoing lobectomy, this was a diagnostic procedure, and would frequently have been followed by a completion thyroidectomy.



Operations for papillary thyroid cancer

For papillary thyroid cancer, the proportion of cases undergoing primary total thyroidectomy increases with T-stage. This is expected, as:

- Lobectomy may be considered adequate treatment for some small tumours.
- Tumour stage is correlated with the rate of pre-operative diagnosis (C5/Thy5) on FNAC: 23% for T1; 29% for T2; 45% for T3; 64% for T4.
- Other clinical or radiological features may increase the pre-operative suspicion of cancer with more advanced T-stage.

Thyroid surgery for papillary thyroid cancer: Type of operation and cancer staging (n=524)

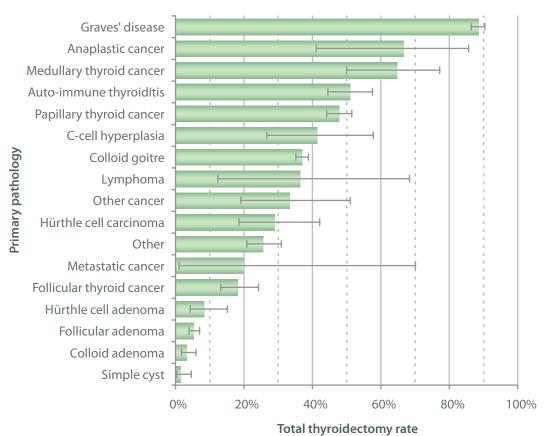
Fourth National Audit Report 2012

Fourth National Audit Report 2012

First-time surgery

Type of operation and pathology

For first-time surgery, the rate of primary total thyroidectomy for papillary, follicular and Hürthle cell cancers is lower than that for other thyroid cancers and for some benign diseases. This is explored in more detail in the analyses on the following 3 pages.


First-time thyroid surgery: primary pathology and operation; data accumulated after the first revision of the registry

		Operation								
		Total thyroidectomy	Lobectomy & sub-total lobectomy	Lobectomy	Bilateral sub-total lobectomy	Near-total lobectomy	Biopsy	Other	Unspecified	All
	Anaplastic cancer	12	1	4	0	0	1	0	3	21
	Auto-immune thyroiditis	121	8	96	10	0	1	1	22	259
	C-cell hyperplasia	17	0	19	4	1	0	0	4	45
	Colloid adenoma	11	3	318	0	3	0	1	44	380
	Colloid goitre	1,004	60	1,534	68	35	1	12	290	3,004
	Follicular adenoma	46	1	802	4	14	0	5	80	952
	Follicular thyroid cancer	37	1	162	1	2	0	1	12	216
ogy	Graves' disease	914	46	10	54	1	0	7	83	1,115
ţ	Hürthle cell adenoma	10	0	106	3	1	0	0	10	130
' paí	Hürthle cell carcinoma	18	3	38	1	1	0	1	2	64
Jary	Lymphoma	4	0	4	0	0	3	0	5	16
Primary pathology	Metastatic cancer	1	0	2	0	0	0	2	0	5
	Medullary thyroid cancer	33	0	16	1	0	1	0	4	55
	Papillary thyroid cancer	354	7	357	17	3	1	1	44	784
	Simple cyst	3	0	195	0	1	2	3	56	260
	Other cancer	12	1	19	3	1	0	0	1	37
	Other	78	4	208	4	4	1	6	82	387
	Unspecified	221	16	411	8	4	2	4	112	778
	All	2,896	151	4,301	178	71	13	44	854	8,508

Fourth National Audit Report 2012

First-time thyroid surgery: Type of operation and primary diagnosis (n=6,988)

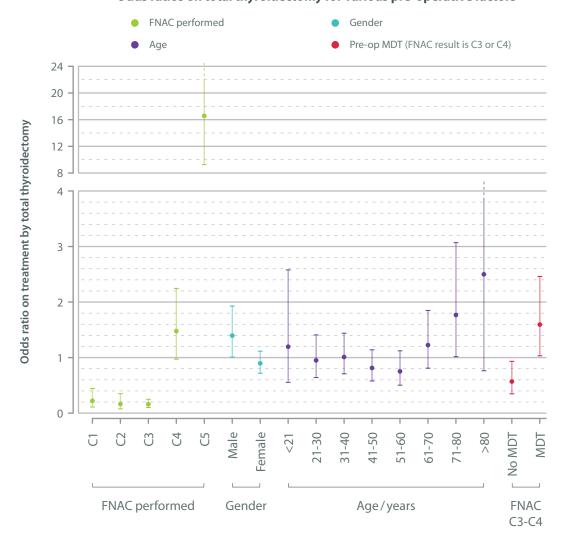
Fourth National Audit Report 2012

This analysis examines those factors known pre-operatively that might influence the probability of a total thyroidectomy being performed at the first operation (where PTC or MTC were the primary diagnoses).

For PTC it is clear that this probability is increased by:

- Cytology result.
- Factors which raise the clinical index of suspicion: male gender and age <21 or >70 years.
- Pre-operative MDT discussion, where cytology is equivocal.

For MTC, case numbers are smaller, though pre-operative MDT discussion may also be relevant.


First-time thyroid surgery for papillary thyroid cancer: odds on total thyroidectomy; data accumulated after the first revision of the registry

				Tota	al thyroidect	omy		
			No	Yes	Rate	Odds ratio <i>versus</i> overall (95% CI)		
		C1	49	10	16.9%	0.22 (0.11-0.44)		
	FNAC result where FNAC performed	C2	53	8	13.1%	0.16 (0.08-0.35)		
		C3	170	25	12.8%	0.16 (0.10-0.25)		
	esul	C4	44	60	57.7%	1.48 (0.97-2.24)		
	AC re	C5	13	199	93.9%	16.57 (9.26-29.67)		
	A N	Unspecified	4	1	20.0%	0.27 (0.03-2.43)		
		All	328	303				
	Gender	Male	82	103	55.7%	1.39 (1.01-1.93)		
		Female	310	250	44.6%	0.90 (0.72-1.12)		
Ŋ		Unspecified	0	0	NA	NA		
Pre-operative factors		All	392	353				
re fa		<21	13	14	51.9%	1.20 (0.55-2.58)		
ativ		21-30	62	53	46.1%	0.95 (0.64-1.41)		
per	ars	31-40	77	70	47.6%	1.01 (0.71-1.44)		
re-c	/ye	41-50	97	71	42.3%	0.81 (0.58-1.14)		
<u> </u>	Jery	51-60	68	46	40.4%	0.75 (0.50-1.12)		
	Age at surgery / years	61-70	49	54	52.4%	1.22 (0.81-1.85)		
	e at	71-80	22	35	61.4%	1.77 (1.02-3.07)		
	Ag	>80	4	9	69.2%	2.50 (0.76-8.18)		
		Unspecified	0	1	100.0%	NA		
		All	392	353				
	. 40	No MDT	115	26	18.4%	0.57 (0.35-0.93)		
	MDT for FNAC C3-C4	MDT	79	50	38.8%	1.59 (1.03-2.46)		
	MD	Unspecified	20	9	31.0%	1.13 (0.50-2.59)		
	F	All	214	85				

Fourth National Audit Report 2012

First-time thyroid surgery for papillary thyroid cancer: Odds ratios on total thyroidectomy for various pre-operative factors

Pre-operative factor

Fourth National Audit Report 2012

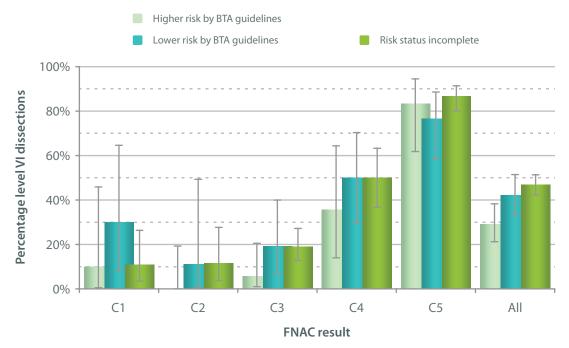
First-time thyroid surgery for medullary thyroid cancer: odds on total thyroidectomy; data accumulated after the first revision of the registry

			Total thyroidectomy					
			No	Yes	Rate	Odds ratio <i>versus</i> All (95% CI)		
		C1	1	0	0.0%	NA		
	FNAC result where FNAC performed	C2	0	1	100.0%	NA		
		C3	8	0	0.0%	2.5 (0.26-24.10)		
	esul	C4	1	5	83.3%	8.0 (0.94-68.41)		
	AC P	C5	1	16	94.1%	NA		
	A H	Unspecified	0	0	NA	NA		
		All	11	22				
		Male	9	20	69.0	1.18 (0.44-3.11)		
	Gender	Female	9	14	60.9	0.82 (0.30-2.27)		
٧		Unspecified	0	0	NA	NA		
Pre-operative factors		All	18	34				
/e fa		<21	0	6	100.0	NA		
rativ		21-30	2	2	50.0	0.53 (0.07-4.08)		
bei	ars	31-40	1	6	85.7	3.18 (0.35-28.46)		
re-c	/ye	41-50	4	6	60.0	0.79 (0.20-3.18)		
<u> </u>	yery	51-60	3	8	72.7	1.41 (0.33-5.99)		
	surç	61-70	6	1	14.3	0.09 (0.01-0.79)		
	Age at surgery / years	71-80	0	5	100.0	NA		
	Ag	>80	2	0	0.0	NA		
		Unspecified	0	0	NA	NA		
		All	18	34				
	. 45	No MDT	5	0	0.0	NA		
	MDT for FNAC C3-C4	MDT	3	4	57.1	2.40 (0.38-15.32)		
	MDI	Unspecified	1	1	50.0	1.80 (0.09-35.43)		
	- E	All	9	5				

Fourth National Audit Report 2012

Lymph node dissection for cancer

Again, the difficulty of following patients longitudinally across more than one procedure makes it impossible to determine the proportion of cancer cases overall who receive lymph node surgery, as this may be performed at the first or any number of subsequent procedures.


The following data however show that, for first-time operations for PTC:

The rate of primary level VI node dissection is largely determined by the confidence of pre-operative (FNAC) diagnosis: where FNA is C5, the vast majority undergo Level VI dissection, of which a substantial proportion are *prophylactic* in intent (judged from the overall >40% rate of N0 nodal stage).

Opinion varies on the need for (prophylactic) level VI dissection for PTC, with a selective approach clearly being favoured in many centres. There remains however a very large variation in the rate of such dissection, unlikely to be due solely to variation in known risk factors for nodal disease. The BTA guidelines suggest that even for clinically uninvolved nodes, level VI dissection should be performed if the patient is higher risk due to male gender, age >45 years or T3/4 tumours. Not all such patients undergo this dissection, even with C5 diagnosis pre-op. Also, the proportion undergoing Level VI dissection is little different overall between those cases meeting and those not meeting these criteria. This may imply that members do not believe in the guidance, or it may be that there is considerable variation between members in the proportion of cases having clinically involved nodes.

A significant number of members perform level VI dissections relatively infrequently: this might argue in favour of greater centralisation of this type of surgery.

Data for first-time surgery for MTC are as follows:

- C1 0.0% (0 / 1)
- C2 NA (0)
- C3 0.0% (0/7)
- C4 83.3% (5/6)
- C5 100.0% (16/16)

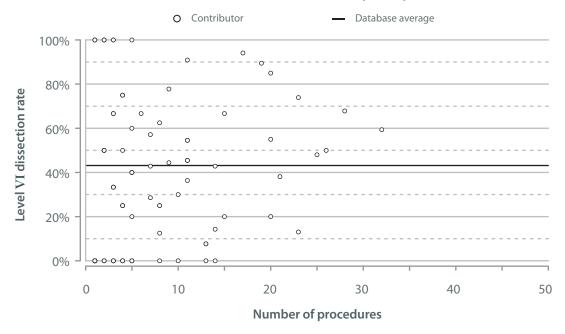
Fourth National Audit Report 2012

First-time thyroid surgery for papillary thyroid cancer: reported level ${ m VI}$ dissection rates by each member

Number of operations recorded for higher-volume contributors Higher-volume members Lower-volume members

Number of operations recorded for lower-volume contributors

Fourth National Audit Report 2012



There appears to be considerable variation between members with respect to rates of level VI dissection at first surgery for PTC.

This may be due to:

- Differences in rates of pre-operative cancer (C5/Thy5) diagnoses on FNAC.
- Differences in case-mix between surgeons.
- Variation in thresholds for lymphadenectomy between units/surgeons.

First-time thyroid surgery for papillary thyroid cancer: Level VI dissection rates (n=725)

First-time thyroid surgery for papillary thyroid cancer: lateral and central neck dissections alone or in combination

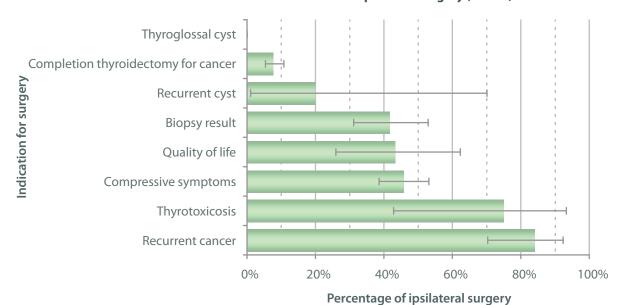
		Da	nta
		Count	Proportion
	None	423	55.8%
ed	2-4 ± 6	17	2.2%
dissected	2-5 ± 6	70	9.2%
	6 ± 7	191	25.2%
Nodes	Others	57	7.5%
Z	Unspecified	26	
	All	784	

Where (first-time) neck dissection was performed for papillary thyroid cancer, in just over half of cases this involved central lymphadenectomy alone.

Of the remainder, most had formal dissection of levels II-V in addition to central neck dissection. Presumably, these were cases presenting with abnormal lateral neck nodes.

Fourth National Audit Report 2012

Re-operative surgery


The commonest indication for re-operative surgery is *completion thyroidectomy for cancer*, representing 53% of cases where indication is recorded. As expected, most of these are contralateral lobectomies alone.

Indeed, the large majority of all re-operative cases are unilateral lobectomies. Bilateral resections account for only around 15% of all re-do cases within the whole database.

Redo thyroid surgery: indication for surgery and side of previous surgery; data accumulated after the first revision of the registry

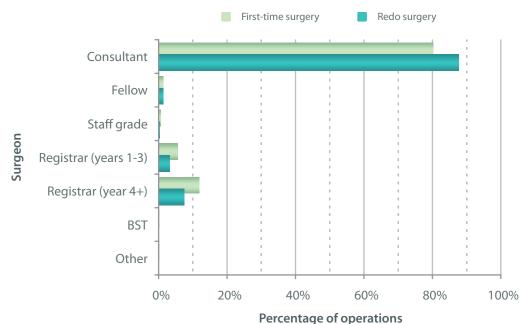
		Same side as previous surgery				
		No	Yes	Unspecified	Ipsilateral rate	
	Thyrotoxicosis	3	9	0	75.0%	
	Compressive symptoms	103	87	22	45.8%	
Jery	Quality of life	17	13	4	43.3%	
surgery	Recurrent cyst	4	1	0	20.0%	
for	Biopsy result	49	35	18	41.7%	
	Completion thyroidectomy for cancer	385	32	58	7.7%	
Indication	Recurrent cancer	8	42	12	84.0%	
Ind	Thyroglossal cyst	0	0	0	NA	
	Unspecified	17	14	22	45.2%	
	All	586	233	136	28.4%	

Redo thyroid surgery: Indication for surgery and side of previous surgery (n=788)

Fourth National Audit Report 2012

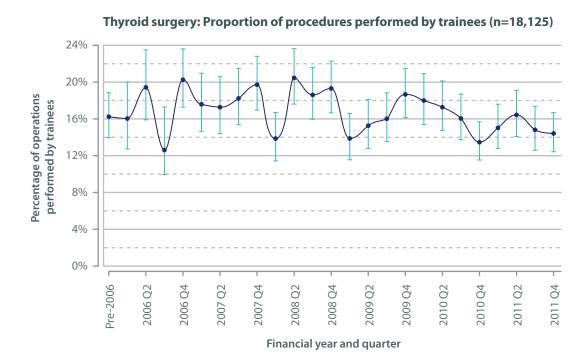
Grade of surgeon

As detailed in the 2009 report, the collection of data on grade of primary and assistant surgeons does not allow recognition that a part of the operation may have been undertaken by a trainee. This may lead to under-estimation of the extent of trainees' involvement as primary surgeon.


Nonetheless, a middle-grade surgeon was recorded as primary surgeon in only 3,369 cases over the whole lifetime of the database, less than 500 cases *per* year since introduction of the electronic database. Over time, if anything, there has been a slight downward trend in the proportion of cases performed by trainees as primary surgeon. Spread across the breadth of all surgical trainees in the United Kingdom, this might imply a limited exposure to thyroid surgery, although it is likely that this exposure will actually be concentrated in the hands of a small cohort of sub-speciality trainees.

Reassuringly for training, where a trainee is primary surgeon, a consultant is the assistant in the great majority of cases.

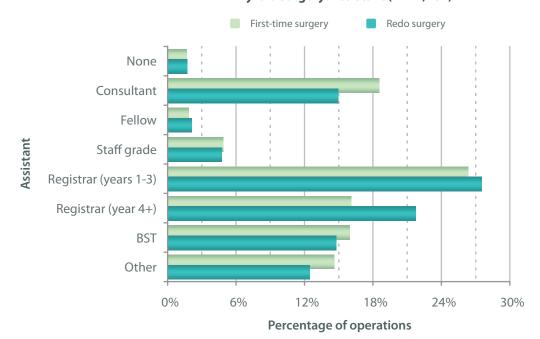
Thyroid surgery: surgeon and operation sequence; data taken over the life of the database


			Operation	sequence	
		First-time	Redo	Unspecified	AII
	Consultant	12,820	1,646	234	14,700
	Fellow	221	25	2	248
	Staff grade	92	6	1	99
uo	Registrar (years 1-3)	898	60	10	968
Surgeon	Registrar (years 4+)	1,899	140	15	2,054
Su	BST	38	1	0	39
	Other	17	0	0	17
	Unspecified	134	21	624	779
	All	16,119	1,899	886	18,904

Fourth National Audit Report 2012

80

Fourth National Audit Report 2012



Grade of assistant

Thyroid surgery: assistant and operation sequence; data taken over the life of the database

			Operation	sequence	
		First-time	Redo	Unspecified	All
	None	258	31	1	290
	Consultant	2,865	270	31	3,166
	Fellow	287	38	3	328
يد	Staff grade	755	86	8	849
Assistant	Registrar (years 1-3)	4,067	498	42	4,607
\ssis	Registrar (years 4+)	2,487	393	23	2,903
4	BST	2,462	267	26	2,755
	Other	2,255	225	33	2,513
	Unspecified	683	91	719	1,493
	All	16,119	1,899	886	18,904

Thyroid surgery: Assistant (n=14,764)

Fourth National Audit Report 2012

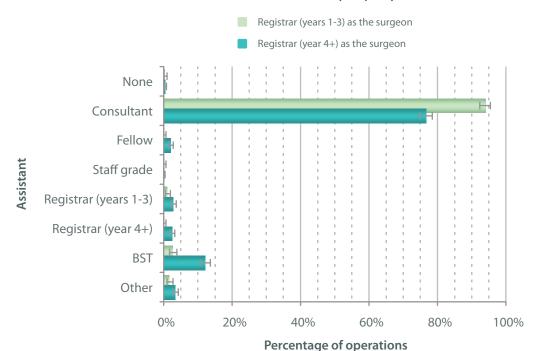
Consultant involvement

Thyroid surgery is clearly consultant-led, with the vast majority of cases involving a consultant as either primary surgeon or assistant. This has remained a consistent feature over time, as noted in previous reports.

Consultant involvement rates are as follows:

•	All surgery	95.9%	(18,110; 95.6-96.2%).
•	First-time operations	95.7%	(15,972; 95.4-96.0%).
•	Redo surgery	96.7%	(1,876; 95.8-97.5%).

Fourth National Audit Report 2012


Surgeon & assistant

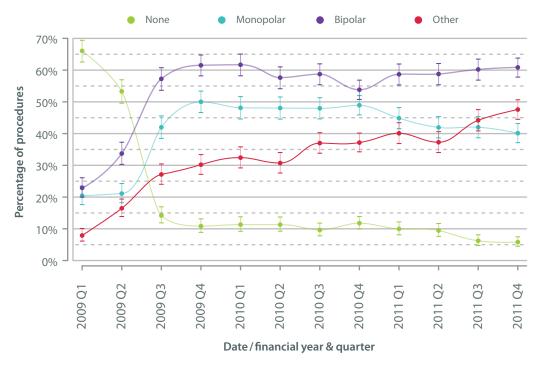
Dual operating by two consultants occurred in 2.9% of cases where the surgeon and assistant were both recorded. This raises the issue of joint operating and how outcomes for each consultant member should be entered in these circumstances, as this has sometimes led to duplicate entries being made. The structure of the database ought to be changed to allow members to register their involvement, but to ensure that outcome of an individual operation is only entered once.

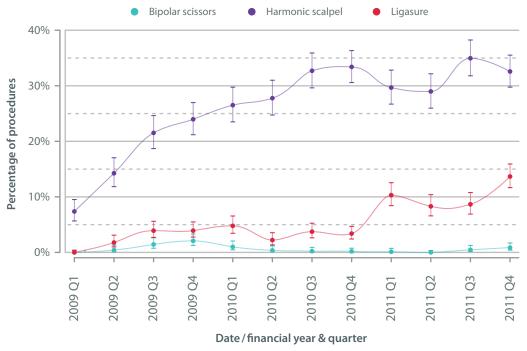
Thyroid surgery: surgeon and assistant combinations; data taken over the life of the database

			Assistant							
		None	Consultant	Fellow	Staff grade	Registrar (years 1-3)	Registrar (years 4+)	BST	Other	Unspecified
	Consultant	279	504	284	845	4,491	2,774	2,456	2,360	707
	Fellow	0	58	0	0	34	75	13	64	4
	Staff grade	0	82	0	1	6	0	6	4	0
o	Registrar (years 1-3)	3	909	1	1	10	1	25	16	2
Surgeon	Registrar (years 4+)	8	1,569	42	2	58	50	248	69	8
Su	BST	0	36	1	0	0	2	0	0	0
	Other	0	8	0	0	5	0	3	0	1
	Unspecified	0	0	0	0	3	1	4	0	771
	All	290	3,166	328	849	4,607	2,903	2,755	2,513	1,493

Thyroid surgery performed by a trainee: Assistant (n=3,012)

Fourth National Audit Report 2012


Energy source


There has been an apparent large expansion in the use of newer technologies for tissue cutting / vessel sealing, in particular, the use of the Harmonic scalpel and, more recently, Ligasure devices.

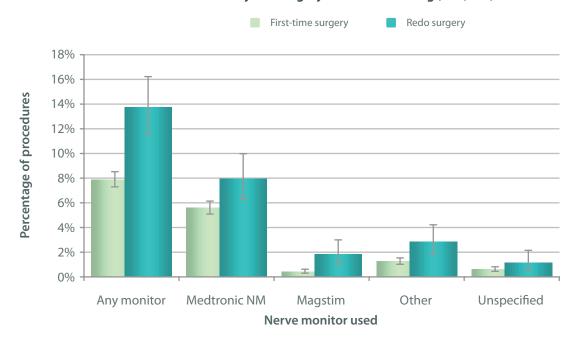
For Ligasure, 22 members report usage in at least one case, whilst for Harmonic scalpel 60 members do so. There is some evidence that use of these technologies is more favoured for bilateral than unilateral resections: Ligasure 49% bilateral; Harmonic scalpel 46% bilateral; compared to a 35% bilateral rate across the database as a whole. This may be due to economic considerations.

There is no evidence to suggest greater use of alternative technologies in cancer cases, compared to benign disease (technologies used in 17% of cases with a cancer diagnosis *versus* 15% overall).

Thyroid surgery: Energy source (n=10,335)

Fourth National Audit Report 2012

Nerve monitoring


Nerve monitoring refers to a variety of devices used to confirm the identification and preservation of the recurrent laryngeal nerve during thyroid surgery. Although the purpose of this process is to help avoid injury to the nerve, there is debate as to its efficacy, and it is interesting therefore to note that in the United Kingdom use of any nerve monitor remains relatively infrequent. There is evidence of selective usage, particularly for re-operative surgery. For cases where information on use of nerve monitoring is present, the membership appears to be split into 3 groups:

- Never users, 63%.
- Selective users, 29% (reporting usage between 0.6-84.0% of their own cases).
- Routine users, 8% (usage in ≥90.0% of their own cases).

Thyroid surgery: nerve monitoring and operation sequence; data accumulated after the first revision of the registry

		Operation sequence						
			Counts	Percentage				
		First-time	Redo	Unspecified	First-time	Redo		
	None	6,984	760	62	92.1%	86.3%		
ō	Medtronic NM	424	70	5	5.6%	7.9%		
monitor	Magstim	33	16	1	0.4%	1.8%		
me	Other	95	25	1	1.3%	2.8%		
Nerve	Unspecified monitor	46	10	0	0.6%	1.1%		
Z	Unspecified	926	74	692				
	All	8,508	955	761				

Thyroid surgery: Nerve monitoring (n=8,463)

Fourth National Audit Report 2012

General outcomes

Hypocalcaemia

This refers to the incidence of low serum calcium levels in the immediate post-operative period. This is an important outcome, as it can result in troublesome symptoms, and has the potential for life-threatening complications if untreated. Since the last revision of the database, the definition of hypocalcaemia has been more rigid (*First day corrected calcium* $< 2.10 \, \text{mmol} \, l^{-1} \, \text{or} \, < 1.2 \, \text{mmol} \, l^{-1} \, \text{ionised}$), and appears as a pop-up dialogue box within the relevant data entry field, to aid members' interpretation.

Hypocalcaemia after total thyroidectomy

The more rigid application of this definition may partly explain the apparent small reduction in the hypocalcaemia rate since the last report: 27.4% (95% CI: 26.2-28.6%) for first-time total thyroidectomy *versus* 29.6% (95% CI: 28.0-31.3%) in 2009.

Total thyroidectomy: post operative hypocalcaemia; data taken over the life of the database

		Post-operative hypocalcaemia					
		No	Yes	Unspecified	Rate (95% CI)		
ā	First-time	3,788	1,427	370	27.4% (26.2-28.6%)		
Sequence	Redo	110	45	23	29.0% (22.2-37.0%)		
edn	Unspecified	50	13	27	20.6% (11.9-33.0%)		
S	All	3,948	1,485	420	27.3% (26.2-28.5%)		

Hypocalcaemia after surgery for papillary thyroid cancer

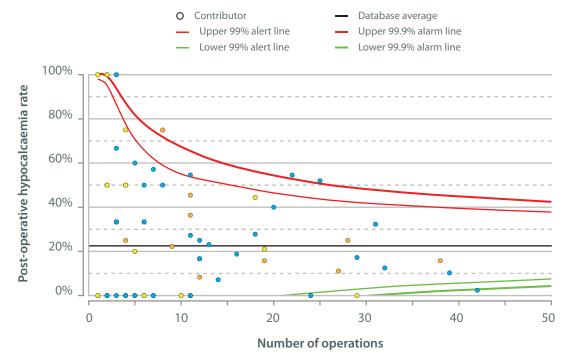
Not surprisingly, hypocalcaemia is commoner with more extensive dissection in the central compartment of the neck, due to the greater potential for damage / devascularisation of parathyroid glands.

Thyroid surgery for papillary thyroid cancer: post operative hypocalcaemia; data accumulated after the first revision of the registry

		Post-operative hypocalcaemia					
		No	Yes	Unspecified	Rate (95% CI)		
	None	481	45	8	8.6% (6.4-11.4%)		
Ej. <	Unilateral	133	29	7	17.9% (12.5-24.9%)		
	Bilateral	152	89	12	36.9% (30.9-43.4%)		
Lev	Unspecified	38	2	3	5.0% (0.9-18.2%)		
	All	804	165	30	17.0% (14.7-19.6%)		

Fourth National Audit Report 2012

Hypocalcaemia after total thyroidectomy for multi-nodular goitre


Total thyroidectomy for multi-nodular goitre: post operative hypocalcaemia; data taken over the life of the database

		Post-operative hypocalcaemia				
		No	Yes	Unspecified	Rate (95% CI)	
a	First-time	779	215	24	21.6% (19.1-24.3%)	
ience	Redo	28	10	0	26.3% (14.0-43.4%)	
Sequ	Unspecified	8	0	0	0.0% (0.0-31.2%)	
S	All	815	225	24	21.6% (19.2-24.3%)	

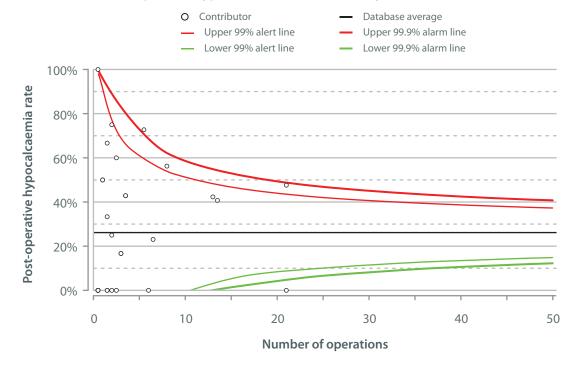
There are sufficient data points for this outcome measure to subdivide members' outcomes by their individual rates of missing data for hypocalcaemia.

There does not appear to be any systematic effect of this subdivision on reported hypocalcaemia rates. However, there must remain some doubt as to the accuracy of individual estimates when a substantial proportion of the data are missing. This is particularly relevant for members reporting complication rates at / outside the alert lines or rates of zero %.

First-time total thyroidectomy for multi-nodular goitre: Post-operative hypocalcaemia rates; financial years 2009-2011 (n=864)

- 1. Orange <5% missing
- 2. Blue 5-20% missing
- 3. Yellow >20% missing

Fourth National Audit Report 2012


Hypocalcaemia after surgery for Graves' disease

Initial hypocalcaemia is commoner after surgery for Graves' disease than for multi-nodular goitre. This is explored in more detail in multi-variate analysis later in this report. This may be a reflection of the metabolic effects of thyrotoxicosis on bone turnover (hungry bone syndrome).

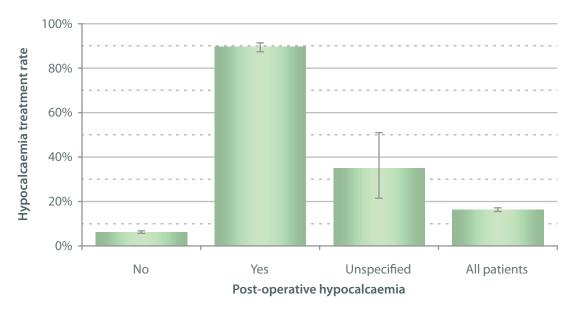
Thyroid surgery for Graves' disease: post operative hypocalcaemia; data accumulated after the first revision of the registry

		Post-operative hypocalcaemia						
		No	Yes	Unspecified	Rate (95% CI)			
a	First-time	791	281	43	26.2% (23.6-29.0%)			
ience	Redo	5	2	0	28.6% (5.1-69.7%)			
Sequ	Unspecified	4	2	37	33.3% (6.0-75.9%)			
S	All	800	285	80	26.3% (23.7-29.0%)			

Thyroid surgery for Graves' disease: Post-operative hypocalcaemia rates; financial years 2009-2011 (n=1,040)

Fourth National Audit Report 2012

Hypocalcaemia treatment after thyroid surgery


Mild hypocalcaemia may not require treatment, although it is interesting to note that of patients developing hypocalcaemia around 90% do receive such therapy. However, around 6% of non-hypocalcaemic patients also receive this treatment, suggesting that they were treated *prophylactically*, perhaps to facilitate earlier discharge home.

Also, note the relatively high rate of missing data for this end-point.

Thyroid surgery: treatment for hypocalcaemia and the occurrence of post operative hypocalcaemia; data accumulated after the first revision of the registry

		Treatment for hypocalcaemia post-operatively						
		No	Yes	Unspecified	Rate (95% CI)			
tive	No	6,521	431	965	6.2% (5.6-6.8%)			
erat	Yes	99	849	16	89.6% (87.4-91.4%)			
Post-operative hypocalcaemia	Unspecified	28	15	1,300	34.9% (21.5-51.0%)			
Pos	All	6,648	1,295	2,281	16.3% (15.5-17.1%)			

Thyroid surgery:
Rates of treatment for hypocalcaemia post-operatively (n=7,943)

Fourth National Audit Report 2012

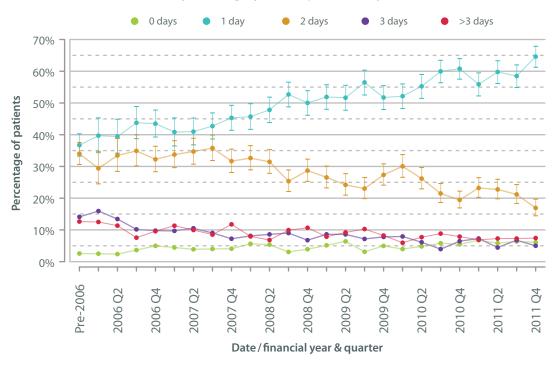
Post-operative stay

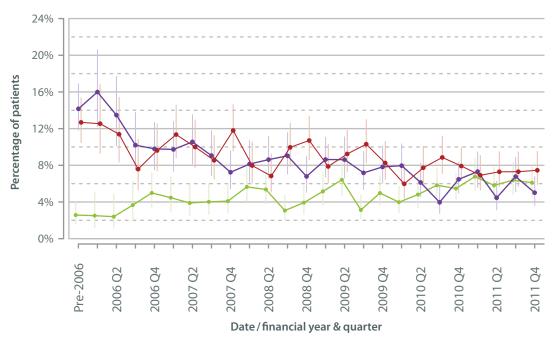
In common with many other surgical procedures, the length of inpatient stay after thyroidectomy has reduced over the last few years. The data show that:

- Much of the reduction in length-of-stay has occurred due to a shift from 2-day stay to 1-day stay, with the proportions of longer durations of stay remaining relatively stable over time, and only a modest increase in true day cases (0 days).
- True day cases now account for around 6% of cases overall; 8% of lobectomies / isthmusectomies; and 1.2% of total thyroidectomies.
- Prolonged hospital stay beyond 4 days is likely to be due in most cases to co-existing morbidities
 and social factors. It is therefore interesting that such durations of stay are more common after total
 thyroidectomy than lobectomy.

One potential reason to delay discharge is monitoring/treatment of hypocalcaemia, and the data do suggest that this is a common cause of longer inpatient stay:

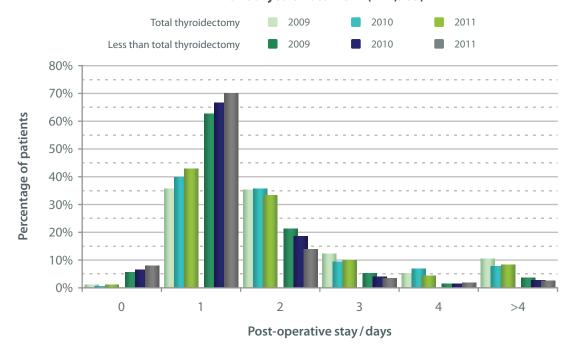
Median stay after total thyroidectomy (as determined from whole database to April 2011) was 2 days. There was, however, a significantly higher rate of hypocalcaemia in those staying >2 days compared to those staying \leq 2 days (572/1,189 = 48.1%, compared to 753/3,700 = 20.4%, χ^2 = 349.5, p<0.001).


These findings are consistent with the generally shorter lengths-of-stay seen across many surgical specialties. Thyroid surgery may be particularly suited to such short hospital episodes, due to the less invasive nature of this surgery and relatively low levels of post-operative pain.


True daycase thyroidectomy, however, seems not to have been embraced by the membership. This may be due to the potential for life-threatening airway compromise to develop rapidly, if bleeding occurs. The risk of this complication is known to exist for up to 24 hours post-operatively, and this is likely to be deterring members from offering day case surgery in the majority of cases.

Fourth National Audit Report 2012

Thyroid surgery: Post -operative stay (n=15,837)

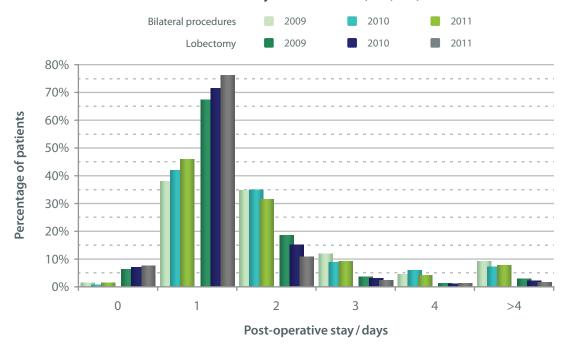

Fourth National Audit Report 2012

Length-of-stay is clearly related to the extent of surgery. Very few patients undergo total thyroidectomy on a daycase basis, probably due to the potential increased risks of haemorrhage compared to unilateral lobectomy, plus the need to monitor calcium levels in the first 24 hours. In-hospital stays of 4 or more days are commoner with total thyroidectomy than lesser resections, however, probably due to the need for more prolonged monitoring of calcium levels and / or treatment of hypocalcaemia in a proportion of these cases.

Thyroid surgery: post-operative stay and procedure over the financial years 2009-2011

		Procedure and financial year ending								
		1	Total thyroidectomy				Less than total thyroidectomy			
		2009	2010	2011	All	2009	2010	2011	All	
	0 days	9	5	12	26	91	115	139	345	
ay	1 day	291	379	440	1,110	1,004	1,189	1,213	3,406	
Post-operative stay	2 days	288	339	341	968	342	331	241	914	
ativ	3 days	100	89	101	290	83	71	60	214	
per	4 days	43	65	45	153	23	27	31	81	
st-c	>4 days	86	74	86	246	58	49	45	152	
Po	Unspecified	114	123	180	417	237	234	303	774	
	All	931	1,074	1,205	3,210	1,838	2,016	2,032	5,886	

Thyroid surgery: Post-operative stay and procedure; financial years 2009-2011 (n=7,905)

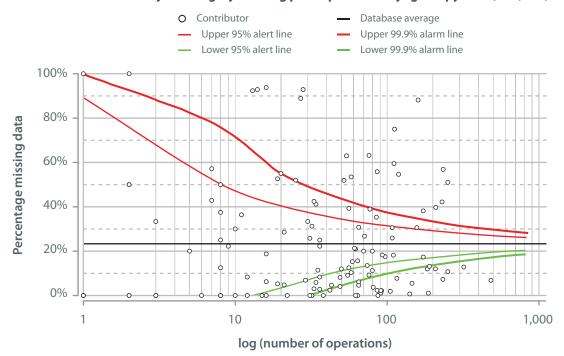

Fourth National Audit Report 2012

Thyroid surgery: post-operative stay and procedure over the financial years 2009-2011

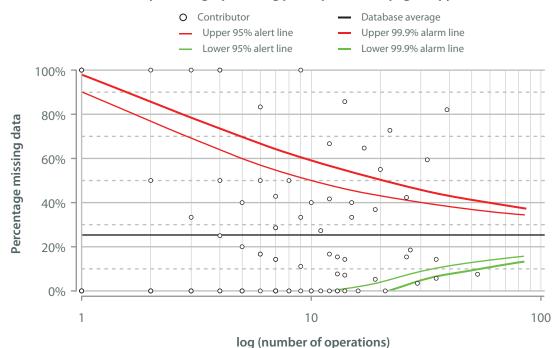
		Procedure and financial year ending								
		E	Bilateral procedures				Lobectomy			
		2009	2010	2011	All	2009	2010	2011	All	
	0 days	17	10	19	46	78	97	98	273	
ay	1 day	420	519	602	1,541	832	984	975	2,791	
Post-operative stay	2 days	385	432	413	1,230	229	209	139	577	
ativ	3 days	132	110	120	362	44	42	31	117	
per	4 days	50	74	56	180	15	15	16	46	
st-c	>4 days	102	89	101	292	37	30	22	89	
Po	Unspecified	150	161	222	533	171	175	196	542	
	All	1,256	1,395	1,533	4,184	1,406	1,552	1,477	4,435	

Thyroid surgery: Post-operative stay and procedure; financial years 2009-2011 (n=7,544)

Fourth National Audit Report 2012

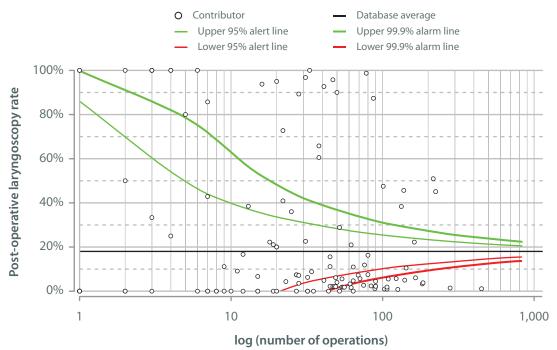

Post-operative laryngoscopy / voice check

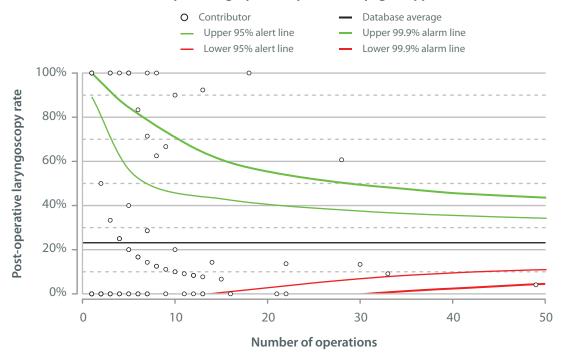
Data on the use of post-operative laryngoscopy raise several concerns:


The rate of missing data is particularly high for this field, remaining unrecorded in >20% of entries, with large variation between members with respect to data completeness.

As with pre-operative laryngoscopy, there appears to be no consensus on post-operative assessment of vocal cord function, with variation in laryngoscopy rates between 0-100%.

First-time thyroid surgery: Missing post-operative laryngoscopy data (n=8,508)

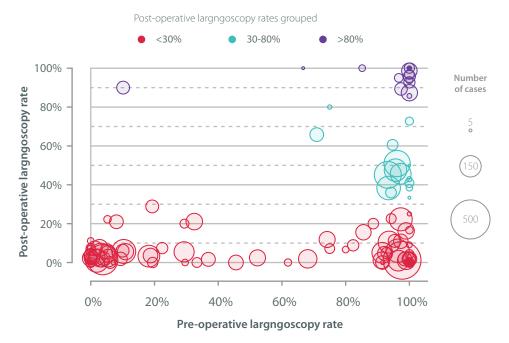

Redo thyroid surgery: Missing post-operative laryngoscopy data (n=955)


When recorded, mean rates of post-op laryngoscopy are <20% overall, and are no higher even for re-operative surgery.

Most members arrange post-operative laryngoscopy in only a small number of cases (probably only patients with symptomatic voice change); some do so selectively, but in the majority of cases; and a very few members clearly arrange post-operative cord checks routinely.

First-time thyroid surgery: Post-operative laryngoscopy rates (n=6,524)

Redo thyroid surgery: Post-operative laryngoscopy rates (n=713)


Fourth National Audit Report 2012

The following chart combines the reported rates of both pre- and post-operative laryngoscopy by member, and clearly demonstrates the division of the membership by policies for routine or selective assessments of vocal cord function at both time intervals.

These observations together raise serious doubts as to the accuracy of any estimates of recurrent laryngeal nerve injury, and of any comparisons of nerve palsy rates between patient groups or surgeons. This is compounded by the high rate of missing data on recurrent nerve palsy rate itself (detailed below).

If data from the audit are to be used for national benchmarking purposes, urgent attention to these issues will be necessary.

First-time thyroid surgery: Pre- and post -operative laryngoscopy rates for each member

The reported incidence of RLN palsy is clearly influenced by these policies (for performance of post-operative laryngoscopy), as follows:

RLN palsy rates (reported) by rate of performance of post-operative laryngoscopy:

•	<30% post-operative laryngoscopy gives a	1.7% RLN palsy rate	(n=3,496; 95% CI: 1.3-2.2%).
---	--	---------------------	------------------------------

• 30-80% 2.5% (n=565; 95% CI: 1.4-4.2%.).

• >80% 4.2% (n=309; 95% Cl:2.4-7.3%).

Surgery for thyroid disease

The British Association of Endocrine and Thyroid Surgeons

Fourth National Audit Report 2012

Comment on the laryngoscopy and RLN palsy data

Voice change due to recurrent laryngeal nerve injury is arguably the most significant longer-term complication of thyroid surgery, with potential serious impact on quality of life.

It is therefore evident that RLN palsy rate should be an important audit outcome measure. However, this report highlights some difficulties in obtaining truly reliable estimates of this rate, particularly when comparing outcome between surgeons, such that it would be inappropriate to publish funnel plots of the RLN palsy rates currently reported. These difficulties in summary are:

- A relatively high rate of missing data for both post-operative laryngoscopy and RLN palsy data fields.
- Large variation in the use of laryngoscopy both pre- and post-operatively, this variation clearly influencing the reported rate of RLN palsy.

The issue of routine post-operative laryngoscopy was debated at a *consensus statement* session at the last Annual Meeting of the BAETS in 2011. The resulting consensus statement supported routine assessment of vocal cord function after thyroid surgery.

Such routine assessment would certainly facilitate more accurate measurement of RLN palsy rates, and more reliably allow comparison between members with respect to this outcome measure. From the perspective of this audit, therefore, such a policy should be supported.

Fourth National Audit Report 2012

Outcomes for first-time operations

Overview of post-operative events

Complication rates (with 95% confidence intervals) have remained relatively stable over time:

	2006-2007		200	2008-2009		10-2011
Immediate post-operative outcom	es					
Mortality	0.19%	(0.08-0.41%)	0.19%	(0.09-0.37%)	0.14%	(0.07-0.29%)
Haemorrhage	1.1%	(0.8-1.5%)	1.2%	(1.0-1.6%)	1.0%	(0.8-1.4%)
Any post-operative complication	3.0%	(2.5-3.6%)	3.4%	(2.9-4.0%)	3.3%	(2.9-3.8%)
Hypocalcaemia	14.2%	(13.1-15.3%)	11.7%	(10.8-12.6%)	10.8%	(10.1-11.7%)
Outcomes at follow up						
New RLN palsy	2.0%	(1.55-2.59%)	1.7%	(1.3-2.2%)	1.8%	(1.4-2.5%)
Related readmission	2.5%	(2.0-3.1%)	2.3%	(1.9-2.8%)	2.3%	(1.9-2.7%)
Voice change	5.6%	(4.8-6.4%)	5.6%	(4.9-6.3%)	6.1%	(5.4-6.8%)
Calcium supplements	7.7%	(6.8-8.7%)	6.5%	(5.8-7.3%)	6.1%	(5.4-6.8%)
T3/T4	52.1%	(50.4-53.8%)	50.8%	(49.3-52.3%)	48.0%	(46.7-49.4%)

Mortality after thyroid surgery is reassuringly low, due partly to the nature of the surgery and partly to the patients' relatively young age compared to other types of surgery. Nonetheless, in looking at the data in more detail, it is apparent that 4 of the deaths occurred in patients in their 20s and 30s.

The rates of unspecified (missing) data vary considerably between outcome data fields. Follow-up data remain less complete than those outcomes specified at discharge, probably due to the need for members to revisit the database after the patient has been seen for follow-up and make a separate data entry. Even for outcome at discharge, rates of missing data range from 7.3-9.0%.

The commonest complication immediately after total thyroidectomy is hypocalcaemia.

Hypocalcaemia after lobectomy alone is largely accounted for by completion thyroidectomies.

The need for ongoing calcium/Vitamin D at follow-up has slightly reduced over the years. This may partly reflect the change in definition of this data field, to clarify the outcome as requirement for calcium/vitamin D supplements to maintain normocalcaemia at 6 months. Previously, use of such supplements for other reasons would have been included, plus outcome could have been recorded at an earlier interval post-operatively.

Recurrent laryngeal nerve injury rates are also stable over time, though as noted above, the accuracy of these estimates is uncertain.

Those cases having total thyroidectomy but not receiving T3/4 might represent a data entry problem, while the figures for T3/T4 usage after lobectomy refer to the early post-operative period, rather than representing reliable estimates of long-term hypothyroidism.

Fourth National Audit Report 2012

First-time thyroid surgery: post-operative events for all cases; financial years 2010 & 2011

				Ev	ent incidence	•
			No	Yes	Unspecified	Rate (95% CI)
		Mortality	5,633	8	538	0.14% (0.07-0.29%)
	t-op	Re-operation for haemorrhage	5,670	60	449	1.0% (0.8-1.4%)
nt	Posi	Post-operative complications	5,433	187	559	3.3% (2.9-3.8%)
event		Hypocalcaemia	5,074	617	488	10.8% (10.1-11.7%)
Timing of		New proven RLN palsy	2,562	48	3,569	1.8% (1.4-2.5%)
m in	dn	Related readmission	4,963	115	1,101	2.3% (1.9-2.7%)
Ι	<u> 0</u>	Voice change	4,756	307	1,116	6.1% (5.4-6.8%)
	굔	Calcium supplements	4,610	297	1,272	6.1% (5.4-6.8%)
		T3/T4	2,615	2,418	1,146	48.0% (46.7-49.4%)

First-time thyroid surgery: post-operative events after total thyroidectomy; financial years 2010 & 2011

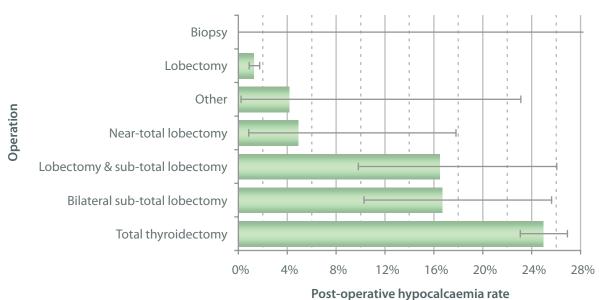
				Ev	ent incidence	•
			No	Yes	Unspecified	Rate (95% CI)
		Mortality	1,967	2	193	0.10% (0.02-0.41%)
	t-op	Re-operation for haemorrhage	1,977	26	159	1.3% (0.9-1.9%)
Ħ	Post	Post-operative complications	1,863	90	209	4.6% (3.7-5.7%)
event		Hypocalcaemia	1,489	495	178	24.9% (23.1-26.9%)
Timing of		New proven RLN palsy	846	20	1,296	2.3% (1.5-3.6%)
E E	dn	Related readmission	1,685	44	433	2.5% (1.9-3.4%)
F	<u>o</u>	Voice change	1,586	135	441	7.8% (6.6-9.2%)
	Po	Calcium supplements	1,458	201	503	12.1% (10.6-13.8%)
		T3/T4	70	1,650	442	95.9% (94.9-96.8%)

First-time thyroid surgery: post-operative events after lobectomy; financial years 2010 & 2011

			Event incidence					
			No	Yes	Unspecified	Rate (95% CI)		
		Mortality	2,850	4	266	0.14% (0.04-0.38%)		
	t-op	Re-operation for haemorrhage	2,876	25	219	0.9% (0.6-1.3%)		
r	Post	Post-operative complications	2,787	72	261	2.5% (2.0-3.2%)		
event		Hypocalcaemia	2,850	36	234	1.2% (0.9-1.7%)		
g of		New proven RLN palsy	1,321	17	1,782	1.3% (0.8-2.1%)		
Timing	dn	Related readmission	2,542	58	520	2.2% (1.7-2.9%)		
ΙĒ	<u>o</u>	Voice change	2,477	117	526	4.5% (3.8-5.4%)		
	I	Calcium supplements	2,473	50	597	2.0% (1.5-2.6%)		
		T3/T4	2,187	381	552	14.8% (13.5-16.3%)		

Fourth National Audit Report 2012

Hypocalcaemia

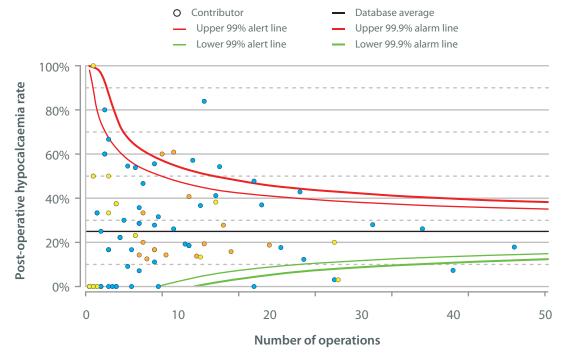

Hypocalcaemia and type of operation

With slightly higher numbers compared to the 2009 report, the trend for greater early hypocalcaemia after total thyroidectomy compared to less-than-total bilateral resections is more obvious. As detailed below, however, this does not translate into a higher rate of late hypocalcaemia/need for calcium/vitamin D supplements.

First-time thyroid surgery: post-operative hypocalcaemia and operation; financial years 2010 & 2011

			Post-opera	tive hypocal	caemia
		No	Yes	Unspecified	Rate (95% CI)
	Total thyroidectomy	1,489	495	178	24.9% (23.1-26.9%)
D	Lobectomy & sub-total thyroidectomy	76	15	4	16.5% (9.8-26.1%)
performed	Lobectomy	2,850	36	234	1.2% (0.9-1.7%)
erfo	Bilateral sub-total lobectomy	85	17	4	16.7% (10.3-25.6%)
	Near-total lobectomy	39	2	0	4.9% (0.8-17.8%)
Operation	Biopsy	9	0	1	0.0% (0.0-28.3%)
per	Other	23	1	2	4.2% (0.2-23.1%)
0	Unspecified	503	51	65	9.2% (7.0-12.0%)
	All	5,074	617	488	10.8% (10.1-11.7%)

Fourth National Audit Report 2012



Hypocalcaemia and workload

Despite the *tighter* definition for post-operative hypocalcaemia, there remains considerable variation between members with respect to this outcome measure. Six members fall outside the upper alarm line, while four fall below the lower alarm line, demonstrating very low rates of hypocalcaemia after total thyroidectomy.

The results have been stratified by the surgeon's rate of missing data for this outcome field. There is no apparent systematic effect of this stratification on the reported outcome rates. However, for one of those members with a very low reported hypocalcaemia rate, data for this outcome were missing in over 20% of cases. The inclusion of missing outcomes for members falling outside the alarm lines might easily lead to a significant change in the appearance of these funnel plots.

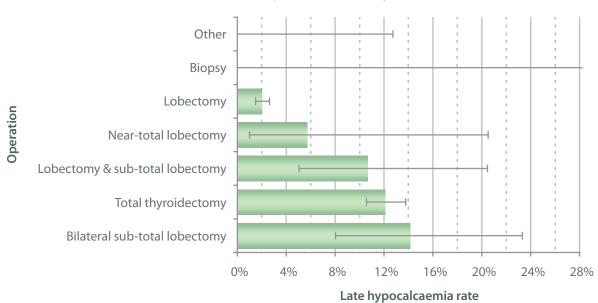
1. Orange <5% missing

2. Blue 5-20% missing

3. Yellow >20% missing

Fourth National Audit Report 2012

Late hypocalcaemia

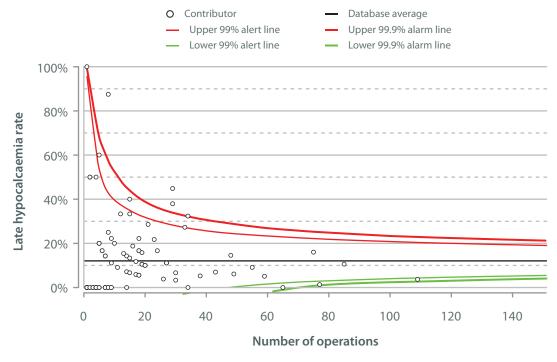

Late hypocalcaemia and type of operation

There is little difference between total thyroidectomy and lesser bilateral procedures with respect to the rate of late hypocalcaemia.

First-time thyroid surgery: late hypocalcaemia and operation; financial years 2010 & 2011

		Late hypocalcaemia					
		No	Yes	Unspecified	Rate (95% CI)		
	Total thyroidectomy	1,456	200	501	12.1% (10.6-13.8%)		
D	Lobectomy & sub-total thyroidectomy	67	8	20	10.7% (5.0-20.5%)		
performed	Lobectomy	2,471	50	596	2.0% (1.5-2.6%)		
erfo	Bilateral sub-total lobectomy	79	13	14	14.1% (8.0-23.3%)		
	Near-total lobectomy	33	2	6	5.7% (1.0-20.5%)		
Operation	Biopsy	8	0	2	0.0% (0.0-31.2%)		
per	Other	22	0	4	0.0% (0.0-12.7%)		
0	Unspecified	470	23	126	4.7% (3.0-7.0%)		
	All	4,606	296	1,269	6.0% (5.4-6.8%)		

Fourth National Audit Report 2012



Late hypocalcaemia and workload

There is considerable variation between members with respect to late hypocalcaemia rates. This may reflect:

- Data quality issues, particularly important for those individuals close to/outside alarm lines who also have higher rates of missing data.
- Differences in operative skill and ability to preserve parathyroid function.
- Differences in indications for surgery/case mix.
- Differences in departmental policies for weaning patients off calcium/vitamin D supplements.

Fourth National Audit Report 2012

Outcomes for redo operations

Overview of post-operative events

As expected, and consistent with previous reports, the stated rate of new RLN palsy is much higher for re-operative surgery on the same side as a previous dissection (relative risk 4.8).

The majority of re-operations in the database are completion lobectomies. Complication rates for these cases are therefore an amalgam between those for first-time total thyroidectomy and first-time lobectomy:

For hypocalcaemia, transient parathyroid compromise may be less frequent after completion thyroidectomy than after total thyroidectomy, as any preserved glands on the opposite side of the neck will not be disturbed anew. Late hypocalcaemia, however, will be similar to first-time total thyroidectomy, as this depends on the sum preservation of parathyroid function over both procedures.

For RLN palsy, the incidence will depend on the proportion carried out ipsilateral to any previous surgery. This explains why the rate for re-do total thyroidectomy is very high, and why that for lobectomy is higher than first-time lobectomy alone.

Redo thyroid surgery: post-operative events; financial years 2010 & 2011

				Ev	ent incidence	1
			No	Yes	Unspecified	Rate (95% CI)
		Mortality	605	1	76	0.2% (0.0-1.1%)
	t-op	Re-operation for haemorrhage	603	8	71	1.3% (0.6-2.7%)
nt	Post	Post-operative complications	576	20	86	3.4% (2.1-5.2%)
eve		Hypocalcaemia	527	80	75	13.2% (10.6-16.2%)
Timing of event		New proven RLN palsy	257	8	417	3.0% (1.4-6.1%)
min	dn	Related readmission	530	16	136	2.9% (1.7-4.8%)
Ę	<u>o</u>	Voice change	503	42	137	7.7% (5.7-10.4%)
	PO-	Calcium supplements	459	62	161	11.9% (9.3-15.1%)
		T3/T4	59	486	137	89.2% (86.2-91.6%)

Redo thyroid surgery: post-operative events after total thyroidectomy; financial years 2010 & 2011

			Event incidence				
			No	Yes	Unspecified	Rate (95% CI)	
Timing of event	Post-op	Mortality	59		12	0.0% (0.0-5.0%)	
		Re-operation for haemorrhage	59	1	11	1.7% (0.1-10.1%)	
		Post-operative complications	56	1	14	1.8% (0.1-10.6%)	
		Hypocalcaemia	45	15	11	25.0% (15.1-38.1%)	
	Follow up	New proven RLN palsy	27	3	41	10.0% (2.6-27.7%)	
		Related readmission	51	2	18	3.8% (0.7-14.1%)	
		Voice change	49	5	17	9.3% (3.5-21.1%)	
		Calcium supplements	37	13	21	26.0% (15.1-40.6%)	
		T3/T4	3	50	18	94.3% (83.4-98.5%)	

Fourth National Audit Report 2012

Redo thyroid surgery: post-operative events after **lobectomy**; financial years 2010 & 2011

			Event incidence			
			No	Yes	Unspecified	Rate (95% CI)
Timing of event	Post-op	Mortality	462	1	54	0.2% (0.0-1.4%)
		Re-operation for haemorrhage	460	6	51	1.3% (0.5-2.9%)
		Post-operative complications	440	16	61	3.5% (2.1-5.8%)
		Hypocalcaemia	403	60	54	13.0% (10.1-16.4%)
	Follow up	New proven RLN palsy	198	5	314	2.5% (0.9-6.0%)
		Related readmission	410	12	95	2.8% (1.5-5.1%)
		Voice change	387	32	98	7.6% (5.4-10.7%)
		Calcium supplements	364	41	112	10.1% (7.4-13.6%)
		T3/T4	53	368	96	87.4% (83.8-90.4%)

Fourth National Audit Report 2012

Multi-variate analyses of factors affecting outcomes after thyroid surgery

Multi-variate analysis of possible predictive factors affecting complication rates of thyroid surgery has been included in this report for the first time. The reasons to consider doing this were:

- 1. Sufficient data have now been accrued to allow statistically valid sub-group analyses and the power to detect meaningful interactions between variables.
- Single variables which affect outcome have become clear over the years, but there is evidence
 of significant interaction between them, so that the importance of any one variable may be
 modulated by others. It seems important to be able to dissect out these interactions.
- 3. In the longer term it would be useful to produce models of risk stratification and risk adjustment, which might allow for improved benchmarking and comparison between surgeons. This is particularly relevant if these audit data are eventually to be utilised for revalidation purposes.

The analyses presented here are an early step along this pathway.

The extent of missing data is, however, a significant limitation in these analyses. For this reason, the only outcomes examined were:

- Re-exploration for haemorrhage.
- Early hypocalcaemia.
- Calcium/Vitamin D supplements at follow-up (late hypocalcaemia).

Data on RLN palsy are not sufficiently robust to allow for such analysis at present.

Bleeding

Data on all cases entered into the database with operations dated prior to April 2011 were extracted, with the following exclusions:

- age <0 years; age >100 years (likely errors in data entry).
- · missing gender.
- left- and right-sided thyroid procedure data missing.

This leaves 16,538 operations, of which 1,037 have no data on *Re-operation for haemorrhage*. The overall rate of re-operations for bleeding was 1.20% (n=15,501; 95% Cl: 1.04-1.39%; odds=0.012).

Potential predictive factors investigated include:

- age.
- gender.
- pathology (Graves', multi-nodular goitre, cancer).
- bilateral versus unilateral surgery.
- operation sequence (first-time surgery, redo surgery).
- any lymph node dissection.

For the age variable, the median for patients who experienced no bleeding was 48 years (IQR: 37-60 years) versus 55 years (IQR: 40-66 years) for patients who did have a re-operation for haemorrhage. A Mann-Whitney U test showed significance at p<0.001.

Fourth National Audit Report 2012

Multiple logistic regression is a method of multi-variate analysis which examines the relative contributions of various potential predictor variables upon a single binary outcome measure (e.g., haemorrhage or no haemorrhage). Predictor variables may themselves be either binary (e.g., female/male) or continuous (e.g., age).

Advantages to this type of analysis are:

Variables which are *significant* in uni-variate analysis may become less so in multiple logistic regression, if they are associated with other, stronger predictors of outcome. Theoretically, this allows identification of the most important factors predicting outcome.

It allows the probability of a particular outcome to be predicted from a given combination of potential predictor variables, which may allow for outcome adjustment by case-mix.

The calculation method is as follows: for any binary outcome (e.g., haemorrhage or no haemorrhage) the influence of potential predictor variables can be combined, so that if the probability of the outcome = q (calculated as r/n), then:

$$\log \left(\frac{q}{1-q}\right) = C + \{(\text{estimate a}) \times (\text{proportion with predictor variable a})\} + \{(\text{estimate b}) \times (\text{continuous predictor variable b})\} \dots \text{ etc.}$$

where C is a constant.

In our tables, O denotes the odds on an event, and OR the odds ratio; SE is the standard error; t is the standard normal deviate; p test probability

So, for example, using the second logistic regression model for haemorrhage (see page 108), a surgeon whose cases had mean age 48 years, with 35% having bilateral surgery, the predicted rate of haemorrhage (q) could be estimated as follows:

$$\log \left(\frac{q}{1-q}\right) = -5.81 + (0.023 \times 48) + (0.488 \times 0.35)$$
$$= -4.535$$

so that:

$$q = \frac{e^{-4.535}}{(1 + e^{-4.535})} = 0.0106$$
$$= 1.06\%$$

Fourth National Audit Report 2012

Re-operation for haemorrhage after thyroid surgery: analysis by potential predictive factors

				Bleed	ling	
		r	n	q	0	OR (95% CI)
	All	186	15,501	0.0120		
	Female	144	12,783	0.0113	0.0114	
	Male	42	2,718	0.0155	0.0157	1.38 (0.97-1.95)
	Not Graves'	154	13,336	0.0115	0.0117	
	Graves'	32	2,165	0.0148	0.0150	1.28 (0.87-1.88)
Potential predictive factors	Not multi-nodular goitre	131	10,504	0.0125	0.0125	
e fac	Multi-nodular goitre	55	4,997	0.0110	0.0110	0.88 (0.64-1.21)
ctiv	Not cancer	161	12,964	0.0124	0.0126	
redi	Cancer	25	2,537	0.0099	0.0100	0.79 (0.52-1.21)
al p	First-time surgery	166	13,796	0.0120	0.0122	
enti	Redo surgery	19	1,557	0.0122	0.0124	1.02 (0.63-1.64)
Po	Unilateral (all)	90	9,213	0.0098	0.0099	
	Bilateral (all)	96	6,288	0.0153	0.0155	1.57 (1.17-2.09)
	Bilateral sub-total	10	408	0.0245	0.0251	2.54 (1.31-4.91)
	Total	77	5,488	0.0140	0.0142	1.43 (1.06-1.95)
	No LN dissection	174	14,044	0.0124	0.0125	
	LN dissection	12	1,457	0.0082	0.0082	0.66 (0.36-1.18)

Fourth National Audit Report 2012

Re-operation for haemorrhage after thyroid surgery: multiple logistic regression model #1

		Statistical data							
		Estimate (95% CL) SE t p OR (95% CL							
	Constant	-5.91 (-6.48 to -5.32)	0.295	-20.0	0.000	0.003 (0.0015-0.0048)			
	Gender	0.11 (-0.06 to 0.64)	0.178	1.61	0.108	1.332 (0.938-1.890)			
	Age	0.024 (0.015 to 0.034)	0.00493	4.91	9.24×10 ⁻⁷	1.025 (1.015-1.034			
ctors	Graves'	0.234 (-0.224 to 0.069)	0.233	1.00	0.316	1.264 (0.780-1.999)			
Predic	Cancer	-0.063 (-0.557 to 0.431)	0.252	-0.249	0.803	0.939 (0.573-1.539)			
Pre	Laterality	0.440 (0115 to 0.764)	0.166	2.65	0.008	1.55 (1.12-2.15)			
	Node dissection	-0.459 (-1.126 to 0.208)	0.340	-1.35	0.178	0.632 (0.324-43565)			

Final loss: 987.3; χ^2 =40.49 (p<0.001); with all factors included, only age and laterality (*i.e.*, bilateral *versus* unilateral) remain significant. The regression model containing just these two factors is as below:

Re-operation for haemorrhage after thyroid surgery: multiple logistic regression model #2

		Statistical data					
Estimate (95% CL) SE t p OR (9						OR (95% CL)	
S	Constant	-5.81 (-6.35 to -5.27)	0.275	-21.1	0.00	0.0030 (0.0017-0.051)	
Predictors	Age	0.023 (0.014 to 0.032)	4.64×10 ⁻³	4.93	8.48×10 ⁻⁷	1.023 (1.014-1.032)	
	Laterality	0.488 (0.199 to 0.778)	0.148	3.30	9.53×10 ⁻⁴	1.630 (1.220-2.177)	
4	Final loss: 990 7:x ² -33 60 (n<0.001)						

Fourth National Audit Report 2012

Hypocalcaemia

Data on all cases entered into the database with operations dated prior to April 2011 where the laterality was *bilateral* were extracted, with the following exclusions:

- age <0 years; age >100 years.
- missing gender.

This leaves 6,676 operations, of which 457 have no data on *Hypocalcaemia*. The overall rate of hypocalcaemia was 26.6% (n=6,219; 95% CI: 25.5-27.7%; odds=0.36).

Potential predictive factors investigated include:

- age.
- gender.
- pathology (Graves', multi-nodular goitre, cancer).
- operation sequence (first-time surgery, redo surgery).
- level 6 node dissection.

For the age variable, the median for patients who experienced no hypocalcaemia was 48 years (IQR: 38-60 years) versus 45 years (IQR: 35-58 years) for patients who did have hypocalcaemia. A Mann-Whitney U test showed significance at p<0.001.

The trend to higher hypocalcaemia rates for cancer cases are very largely due to association with level 6 dissection. This is highlighted if cancer: is excluded from the model, retaining level 6 dissection.

Hypocalcaemia after bilateral thyroid surgery: analysis by potential predictive factors

				Hypocal	caemia	
		r	n	q	0	OR (95% CI)
	All	1,655	6,219	0.266		
rs	Female	1,379	5,077	0.272	0.373	
predictive factors	Male	276	1,142	0.242	0.319	0.86 (0.74-0.99)
ve f	Multi-nodular goitre	399	1,807	0.221	0.283	
dicti	Graves'	600	2,088	0.287	0.404	1.43 (1.23-1.65)
pre	Cancer	315	939	0.335	0.505	1.78 (1.50-2.13)
ıtial	No LN dissection	1,234	4,837	0.255	0.342	
Potential	LN dissection	271	720	0.376	0.604	1.77 (1.50-2.08)
	First-time surgery	1,590	5,967	0.266	0.363	
	Redo surgery	52	184	0.283	0.394	1.09 (0.78-1.50)

Fourth National Audit Report 2012

Hypocalcaemia after bilateral thyroid surgery: multiple logistic regression model #1

		Statistical data							
		Estimate (95% CL) SE t p OR (95% CL)							
	Constant	-0.662 (-0.885 to -0.516)	0.113	-5.83	5.75×10 ⁻⁹	0.516 (0.413-0.644)			
	Gender	-0.237 (-0.396 to -0.077)	0.0814	2.91	3.65×10 ⁻³	0.789 (0.673-0.926)			
ors	Age	0.010 (-0.014 to -0.006)	0.00203	-4.85	1.24×10 ⁻⁶	0.990 (0.986-0.994)			
Predictors	Graves'	0.183 (0.040 to 0.327)	0.0732	2.50	0.0122	1.20 (1.04-1.38)			
Pre	Cancer	0.197 (-0.028 to 0.421)	0.115	1.71	0.0861	1.22 (0.97-1.52)			
	Node dissection	0.560 (0.321 to 0.799)	0.122	4.59	0.0000	1.75 (1.38-2.22)			
	Final loss: 3196.2; χ^2 =99.14 (p<0.001)								

Hypocalcaemia after bilateral thyroid surgery: multiple logistic regression model #2

		Statistical data						
		Estimate (95% CL) SE t p OR (95% CL)						
	Constant	-0.638 (-0.859 to -0.417)	0.113	-5.66	1.60×10 ⁻⁸	0.528 (0.423-0.659)		
S	Gender	-0.230 (-0.390 to -0.071)	0.081	-2.84	4.59×10 ⁻³	0.794 (0.677-0.931)		
G	Age	-0.010 (-0.014 to -0.006)	0.002	-4.88	1.07×10 ⁻⁶	0.990 (0.986-0.994)		
Predictors	Graves'	0.161 (0.020 to 0.302)	0.072	2.23	0.027	1.17 (1.02-1.35)		
	Node dissection	0.700 (0.524 to 0.877)	0.090	7.77	9.13×10 ⁻¹⁵	2.01 (1.69-2.40)		

Final loss: 3197.6; χ^2 =96.23 (p<0.001)

Fourth National Audit Report 2012

Late hypocalcaemia

Data on all cases entered into the database with operations dated prior to April 2011 where the laterality was *bilateral* were extracted, with the following exclusions:

- age <0 years; age >100 years.
- missing gender.

This leaves 6,676 operations, of which 1,198 have no data on *Calcium/vitamin D supplements at 6 months*. The overall rate of calcium/vitamin D supplements at 6 months was 13.6% (n=5,478;95% CI: 12.7-14.6%; odds=0.16).

Potential predictive factors investigated include:

- age.
- gender.
- pathology (Graves', multi-nodular goitre, cancer).
- operation sequence (first-time surgery, redo surgery).
- level 6 node dissection.

For the age variable, the median for patients who had no supplements was 46 years (IQR: 36-60 years) versus 45 years (IQR: 35-60 years) for patients who did receive supplements (Mann-Whitney U p=0.139).

Calcium/vitamin D supplements at 6 months after bilateral thyroid surgery: analysis by potential predictive factors

			I	Late hypod	alcaemia	
		r	n	q	0	OR (95% CI)
	All	747	5,478	0.136		
rs	Female	622	4,495	0.138	0.161	
predictive factors	Male	125	983	0.127	0.146	0.91 (0.74-1.11)
ve f	Multi-nodular goitre	185	1,646	0.112	0.127	
dicti	Graves'	233	1,867	0.125	0.143	1.13 (0.92-1.38)
pre	Cancer	174	810	0.215	0.274	2.16 (1.72-2.71)
Potential	No LN dissection	532	4,316	0.123	0.141	
ten	LN dissection	141	593	0.238	0.312	2.21 (1.79-2.73)
ď	First-time surgery	707	5,259	0.134	0.155	
	Redo surgery	34	165	0.206	0.260	1.68 (1.14-2.47)

Calcium/vitamin D supplements at 6 months after bilateral thyroid surgery: multiple logistic regression model #1

			Statistical data						
		Estimate (95% CL) SE t p OR (95% CL)							
	Constant	-1.75 (-2.05 to -1.44)	0.155	-11.3	4.99×10 ⁻²⁹	0.174 (0.129-0.236)			
	Gender	-0.210 (-0.430 to 0.009)	0.112	-1.88	0.060	0.810 (0.651-1.009)			
ors	Age	-0.005 (-0.010 to 0.001)	0.003	-1.74	0.081	0.995 (0.990-1.001)			
Predictors	Graves'	0.030 (-0.172 to 0.232)	0.103	0.292	0.770	1.031 (0.842-1.262)			
Pre	Cancer	0.380 (0.090-0.669)	0.148	2.57	0.010	1.462 (1.095-1.952)			
	Node dissection	0.564 (0.258 to 0.871)	0.157	3.61	0.0003	1.758 (1.294-2.390)			

Final loss: 1930.1; χ^2 =63.55 (p<0.001)

The British Association of Endocrine and Thyroid Surgeons

Fourth National Audit Report 2012

Conclusions

Multi-variate analysis has allowed risk factors for certain outcome measures to be identified and quantified. These factors vary in importance depending upon the outcome measure considered, so that:

- Bleeding is largely affected by the extent of thyroidectomy (bilateral subtotal > total > lobectomy)
 and to a lesser effect by (increasing) age. This is consistent with a recent paper from an Austrian
 registry published in the British Journal of Surgery ¹.
- Early hypocalcaemia is affected by Level 6 dissection, Graves' disease and to a lesser degree by (lower) age and (female) gender.
- But late hypocalcaemia is mostly dependent on cancer diagnosis and especially level 6 dissection.
- Inter-surgeon variation, however, still accounts for most of the residual variance. Ultimately, however, we can look to refining these factors to risk-adjust members' complication rates and replot funnel plots accordingly.

^{1.} Promberger R *et al*. Risk factors for post-operative bleeding after thyroid surgery. *British Journal of Surgery*. 2012; **99:** 373-379.

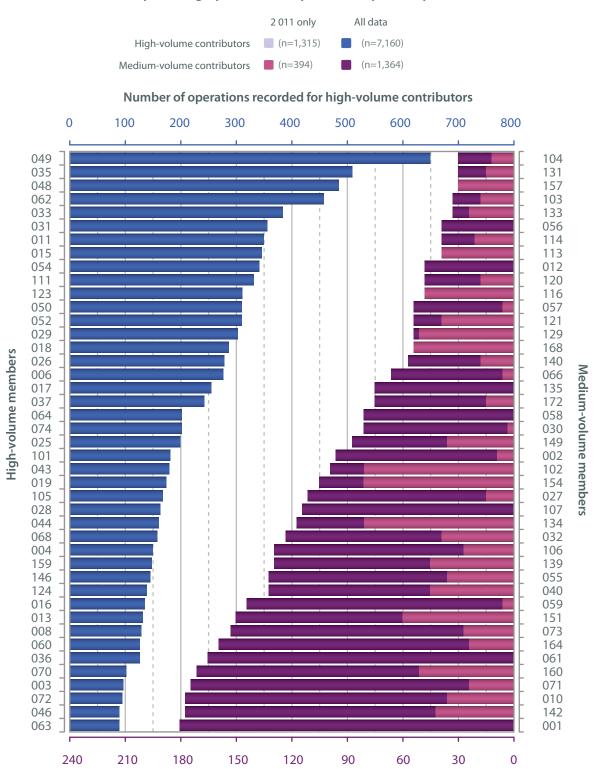
General information from the database

Number of members

The increased number of parathyroid cases reported over time parallels that seen for thyroid surgery.

There are now a total of 8,619 procedures recorded in the database; 110 members have contributed to this total.

The growth of the database (n=8,609 parathyroid cases)



The British Association of Endocrine and Thyroid Surgeons

Fourth National Audit Report 2012

Parathyroid surgery: number of operations reported by each member

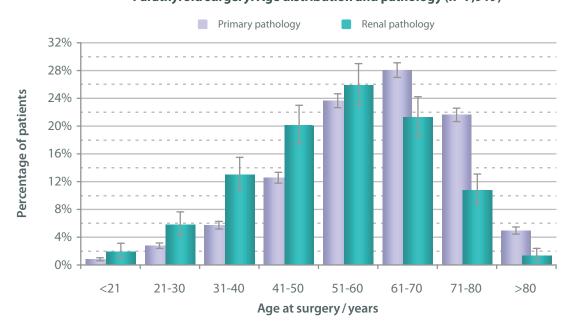
There are data from 24 lower-volume contributors not included in this chart, who submitted a total 95 cases (average = 4.0 cases per member).

Number of operations recorded for medium-volume contributors

Demographics and disease profile

Pathology

Pathology and age


In the 2009 report it was highlighted that some members had recorded patients as having both primary and renal hyperparathyroidism (HPT). Since then, changes to the data entry system have made these two options mutually exclusive, aiding interpretation of the true underlying pathology.

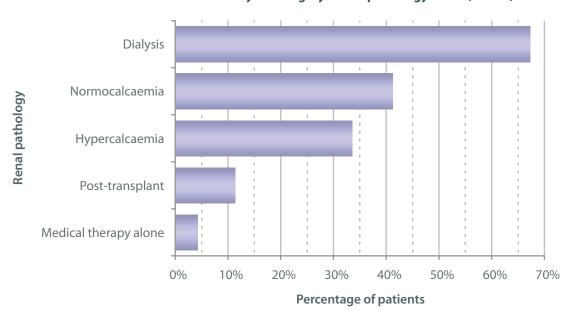
The age profile for primary HPT is as expected, with 78% of patients being >50 years of age. The slightly younger age profile for renal HPT reflects the earlier onset of renal failure and dialysis.


Parathyroid surgery: age and pathology distributions

			Patho	ology	
		Primary	Renal	Unspecified	All
	<21	56	16	7	79
	21-30	194	49	17	260
ars	31-40	403	110	33	546
surgery/years	41-50	887	170	81	1,138
yery	51-60	1,672	219	187	2,078
surç	61-70	1,984	180	203	2,367
at	71-80	1,528	91	143	1,762
Age	>80	349	11	29	389
	Unspecified	0	0	0	0
	All	7,073	846	700	8,619

Parathyroid surgery: Age distribution and pathology (n=7,919)

Fourth National Audit Report 2012


Renal pathology

As expected, the majority of patients undergoing surgery for renal HPT are on dialysis, with a slight predominance of normocalcaemic cases over those with hypercalcaemia.

Parathyroid surgery: renal pathology detail

		Da	ıta
		Count	Proportion
	Normocalcaemia	349	41.3%
g	Hypercalcaemia	284	33.6%
pathology	Medical therapy alone	36	4.3%
patl	Dialysis	569	67.3%
Renal	Post-transplant	96	11.3%
Re	Unspecified	0	
	All	846	

Parathyroid surgery: Renal pathology detail (n=846)

Fourth National Audit Report 2012

Investigations

Localisation techniques

An overview of localisation techniques used

The majority of patients now undergo pre-operative localisation studies prior to first-time surgery. For primary HPT the use of MIBI scanning has increased from around 68% of cases in 2004 to 90% in 2010; ultrasound from 55% to 83% over the same time-interval.

When performed, the positivity rate of each modality is:

- 69.8% for nuclear medicine.
- 59.2% for ultrasound.
- 51.4% for CT/MRI.
- 70.5% for venous sampling.
- 15.8% for PET.
- 84.2% for methylene blue.

The commonest combination of investigations is nuclear medicine & ultrasound.

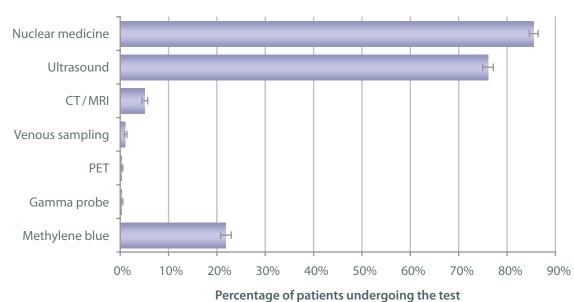
CT/MRI is performed prior to first-time surgery in 5.1% of cases. Of these, the large majority have undergone prior nuclear medicine +/- ultrasound *i.e.*, the CT/MRI is usually a third-line test. However, of 291 cases undergoing CT/MRI where data on nuclear medicine/ultrasound are present:

- 4 patients had neither nuclear medicine nor ultrasound performed.
- 95 patients (33%) had both positive nuclear medicine and positive ultrasound results, raising the question as to the added utility of the cross-sectional imaging (although nuclear medicine and ultrasound may have been both positive, but non-concordant in exact location).

PET scanning is used very infrequently, and appears to have a very low sensitivity when used.

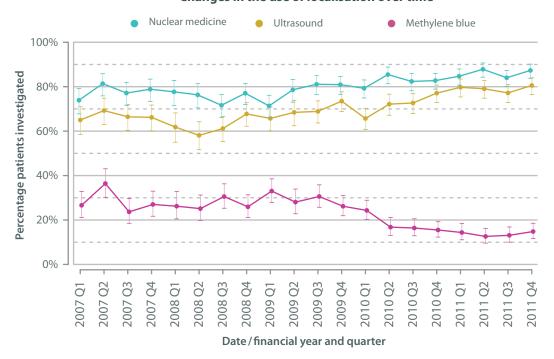
The use of invasive techniques such as selective venous sampling seems anomalous prior to first-time surgery.

Methylene blue usage varies considerably between surgeons: of 107 members for whom data on methylene blue localisation data are available, this technique was used:


- Routinely (>90% of operations) by 14 members.
- Selectively (0.5-90.0% of operations) by 24 members.
- Never by 68 members.

Localisation is performed much less frequently for renal HPT (nuclear medicine 13.5%, USS 11%, CT/MRI 1.5%), presumably because the surgeon would be planning a bilateral exploration anyway.

First-time parathyroid surgery for primary HPT: localisation techniques used


		Localisation technique result						
		Not done	Negative	Positive	Unspecified	Test rate (95% CI)		
ne	Nuclear medicine	847	1,515	3,498	32	85.5% (84.6-86.4%)		
technique	Ultrasound	1,399	1,816	2,632	45	76.1% (75.0-77.2%)		
ech	CT/MRI	5,251	136	144	361	5.1% (4.5-5.7%)		
	Venous sampling	5,562	18	43	269	1.1% (0.8-1.4%)		
Localisation	PET	5,597	16	3	276	0.3% (0.2-0.5%)		
cali	Gamma probe	5,598	16	4	274	0.4% (0.2-0.6%)		
2	Methylene blue	4,407	195	1,037	253	21.8% (20.8-23.0%)		

Localisation technique

Parathyroid surgery for primary HPT: Changes in the use of localisation over time

Fourth National Audit Report 2012

Targeted approach

Localisation techniques and the targeted approach

The concept of targeted surgery is to utilise imaging to identify those cases with single accessible adenomas, and thereby allow a more focussed dissection, potentially to improve cosmesis and reduce morbidity.

Targeted surgery may be achieved by a number of methods (mini-incision open approach, endoscopic etc.), and the audit does not specify which are utilised.

However, it is interesting to note that of those patients who have both nuclear medicine & ultrasound, presumably with the intention of performing targeted surgery, only 51.6% (n=5,222) ultimately undergo a targeted operation.

The reasons for this are explored further below.

Parathyroid surgery: targeted approach and the number of localisation techniques used

		Number of localisation techniques used					
		None	One or more	Unspecified	All		
გ _	No	1,005	3,608	4	4,617		
eted	Yes	2	3,280	3	3,285		
Targa	Unspecified	17	217	483	717		
_ e	All	1,024	7,105	490	8,619		

First-time parathyroid surgery: localisation techniques used

				Localisa	tion techniq	ue result	
			Not done	Negative	Positive	Unspecified	Test rate
		Nuclear medicine	1,617	1,585	1,372	43	64.6%
	_	Ultrasound	1,834	1,791	933	59	59.8%
	etec	CT/MRI	4,048	161	132	276	6.7%
dne	targ	Venous sampling	4,309	26	57	225	1.9%
	Not targeted	PET	4,359	27	5	226	0.7%
in di		Gamma probe	4,359	18	6	234	0.5%
Localisation technique		Methylene blue	3,261	185	933	238	25.5%
ation		Nuclear medicine	54	232	2,992	7	98.4%
alisa		Ultrasound	517	444	2,304	20	84.2%
Loc	eq	CT/MRI	2,911	66	130	178	6.3%
	Targeted	Venous sampling	3,099	9	52	125	1.9%
	Tai	PET	3,139	7	4	135	0.3%
		Gamma probe	3,142	8	0	135	0.3%
		Methylene blue	2,628	66	488	103	17.4%

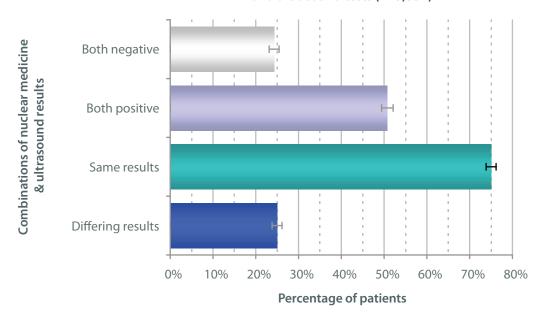
Fourth National Audit Report 2012

First-time parathyroid surgery for primary HPT: localisation techniques used

				Localisa	tion techniq	ue result	
			Not done	Negative	Positive	Unspecified	Test rate
		Nuclear medicine	797	1,302	997	20	74.3%
	-	Ultrasound	958	1,440	692	26	69.0%
	etec	CT/MRI	2,763	94	59	200	5.2%
	targ	Venous sampling	2,943	10	15	148	0.8%
dne	Not targeted	PET	2,954	11	1	150	0.4%
in		Gamma probe	2,957	11	4	144	0.5%
Localisation technique		Methylene blue	2,141	143	690	142	28.0%
atio		Nuclear medicine	41	195	2,436	3	98.5%
alisa		Ultrasound	428	352	1,889	6	84.0%
Loc	eq	CT/MRI	2,425	42	78	130	4.7%
	Targeted	Venous sampling	2,557	5	23	90	1.1%
	Tal	PET	2,573	4	2	96	0.2%
		Gamma probe	2,576	3	0	96	0.1%
		Methylene blue	2,219	49	330	77	14.6%

Fourth National Audit Report 2012

The utility of parathyroid localisation in first-time surgery for primary HPT is in facilitating targeted surgery. True concordance between imaging results is therefore best assessed by examining their usage in relation to the subsequent use and success of targeted surgery.


For the commonest combination of nuclear medicine & ultrasound:

- Approximately 40% of cases have either one or both scans negative and go on to bilateral neck exploration (BNE).
- Around a further 10% have both scans positive, but go on to BNE (presumably due to discrepancy in exact localisation, or detection of multi-gland disease).
- Around 50% are deemed suitable for targeted surgery, of whom a small percentage are converted to BNE.

Fourth National Audit Report 2012

Parathyroid surgery: Agreement between nuclear medicine and ultrasound tests (n=5,352)

Parathyroid surgery: Concordance between nuclear medicine and ultrasound tests (n=5,352)

Fourth National Audit Report 2012

qPTH and conversion

Conversion from targeted surgery to conventional surgery (usually BNE) is commoner (2-fold) if qPTH is used (χ^2 = 33.8, p<0.001). After conversion, the proportion with multi-gland disease is slightly higher in the qPTH group, particularly for hyperplasia (presumed cause for 3.5 gland excisions).

Parathyroid surgery using the targeted approach: qPTH and conversion

		Converted to conventional				
		No	Yes	Unspecified	All	Conversion rate
ō	No	2,098	148	129	2,366	6.6%
nsed	Yes	689	105	55	849	13.2%
F	Unspecified	41	7	22	70	14.6%
귱	All	2,819	260	206	3,285	8.4%

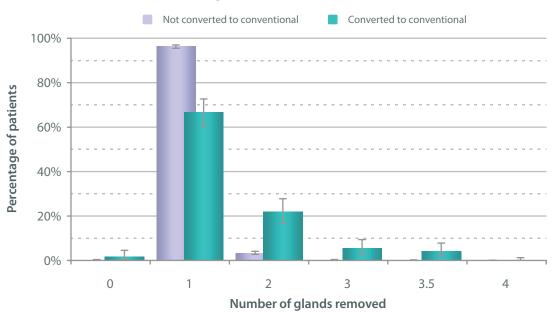
Parathyroid surgery using the targeted approach and were converted to a conventional approach: number of glands removed

		qPTH used			
		No	Yes	Unspecified	All
	0 glands	1	2	1	4
75	1 gland	100	61	4	165
removed	2 glands	29	22	1	52
em	3 glands	9	4	0	13
	3.5 glands	0	10	0	10
Glands	4 glands	0	0	0	0
	Unspecified	9	6	1	16
	All	148	105	7	260

Fourth National Audit Report 2012

Glands removed and the targeted approach

The data suggest that the major causes of conversion to conventional approach are:


- Multi-gland disease, perhaps suspected at targeted surgery due to:
- Appearances suggestive of hyperplasia.
- Observation of a second abnormal gland adjacent to the targeted gland.
- Use of qPTH (all 10 of the 3.5 gland excisions).
- Failure to locate the abnormal parathyroid at targeted surgery (for those cases where only one gland was excised after conversion), or requirement for greater access due to lesion size, difficulties in dissection etc.

It is interesting that 89 patients had two abnormal glands found at targeted surgery, and yet were not converted to BNE. Likewise, it is hard to reconcile excision of 3 or 3.5 glands with a true targeted operation, as this implies conversion to BNE must have occurred.

Parathyroid surgery using the targeted approach for patients with a primary pathology: number of glands removed and conversion to the conventional approach

		Converted to conventional			
		No	Yes	Unspecified	All
	0 glands	4	4	0	8
75	1 gland	2,557	159	171	2,887
removed	2 glands	89	52	7	148
em	3 glands	4	13	1	18
ds r	3.5 glands	1	10	2	13
Glands	4 glands	0	0	0	0
3	Unspecified	31	14	9	54
	All	2,686	252	190	3,128

Parathyroid surgery using the targeted approach for primary pathology: Number of glands removed and conversion (n=2,893)

Fourth National Audit Report 2012

Operation

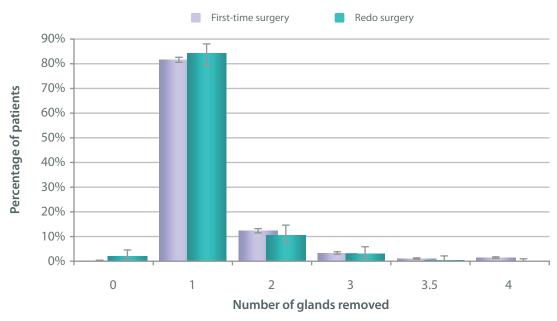
Operation sequence

The proportion with *unspecified* data for this field has improved since the 2009 report. This may also explain an apparent reduction in the proportion of re-operative cases to 5.9% of all cases (6.6% in 2009).

Parathyroid surgery: number of previous operations

		Operation sequence				
		First-time	Redo	Unspecified	All	
S	None	6,794	0	0	6,794	
operations	One	0	347	0	347	
erat	Two	0	45	0	45	
	Three	0	7	0	7	
revious	Four	0	5	0	5	
Prev	Unspecified	0	21	1,400	1,421	
-	All	6,797	425	1,400	8,619	

Fourth National Audit Report 2012


Glands removed and operation sequence

The distribution of number of glands removed is similar for re-do and first-time surgery, with most having only one gland excised, and in over 88% of cases this gland was found in the neck, presumably representing a failed prior exploration.

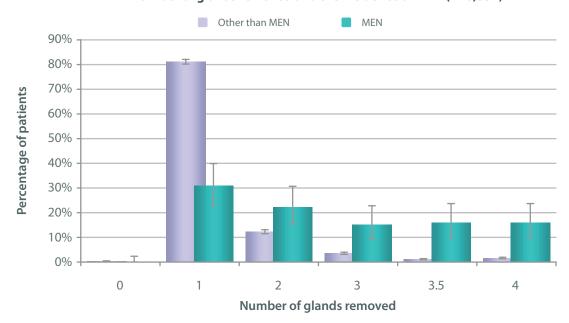
Parathyroid surgery for patients with a non-MEN primary pathology: number of glands removed and operation sequence

		Operation sequence				
		First-time	Redo	Unspecified	All	
	0 glands	21	0	0	21	
-	1 gland	5,458	39	0	6,497	
removed	2 glands	826	28	0	854	
ēme	3 glands	238	19	0	257	
ds	3.5 glands	74	20	0	94	
Glands	4 glands	108	20	0	128	
O	Unspecified	219	3	0	222	
	All	6,944	129	0	7,073	

Parathyroid surgery for patients with a non-MEN primary pathology: Number of glands removed and operation sequence (n=5,987)

Fourth National Audit Report 2012

Glands removed for patients with primary pathology


Glands removed and MEN

Not surprisingly, the incidence of multi-gland disease is high in MEN, but it is interesting that single gland excision was performed in around 30% of MEN cases. This may contribute to the higher rate of persistent HPT in MEN compared to sporadic HPT (see below).

Parathyroid surgery for patients with a primary pathology: number of glands removed and MEN pathology

		MEN				
		No	Yes	Unspecified	All	
	0 glands	21	0	0	21	
-	1 gland	5,458	39	0	6,497	
removed	2 glands	826	28	0	854	
em	3 glands	238	19	0	257	
	3.5 glands	74	20	0	94	
Glands	4 glands	108	20	0	128	
0	Unspecified	219	3	0	222	
	All	6,944	129	0	7,073	

Parathyroid surgery for primary pathology: Number of glands removed and the incidence of MEN (n=6,851)

Fourth National Audit Report 2012

Glands removed and age at operation

Again, the incidence of *double adenomas* does not seem to have a marked predominance in the over 60 age group, contradicting traditional teaching!

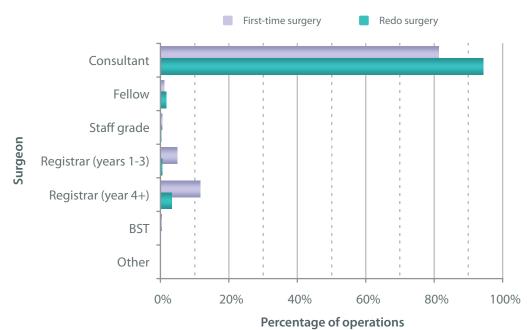
First-time surgery for primary HPT: age and number of glands removed

		Number of glands removed				
		<=1 gland	2 glands	>2 glands	Unspecified	AII
	<21	31	3	2	1	37
	21-30	111	16	16	2	145
ars	31-40	244	33	29	7	313
surgery/years	41-50	594	66	48	11	719
Jery	51-60	1,115	155	81	24	1,375
surç	61-70	1,286	241	73	35	1,635
at	71-80	1,036	154	66	22	1,278
Age	>80	242	33	15	6	296
	Unspecified	0	0	0	0	0
	All	4,659	701	330	108	5,798

First-time surgery for non-MEN HPT: Age and number of glands removed (n=5,690)

Fourth National Audit Report 2012

Surgeon

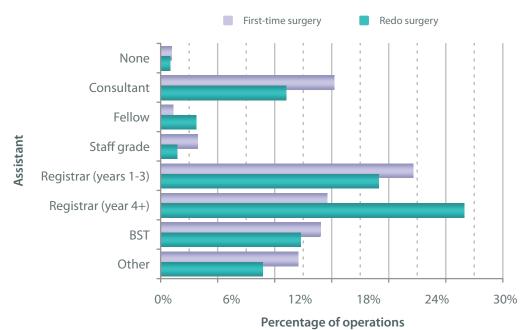

As with thyroid surgery, parathyroidectomy is largely consultant-delivered.

A middle-grade doctor was recorded as primary surgeon in 1,462 (17.8%) cases over the life-time of the database.

Parathyroid surgery: surgeon and operation sequence

		Operation sequence			
		First-time	Redo	Unspecified	All
	Consultant	5,512	400	798	6,710
	Fellow	72	7	40	119
	Staff grade	38	1	2	41
uo	Registrar (years 1-3)	334	2	62	398
Surgeon	Registrar (years 4+)	791	14	99	904
Su	BST	26	0	6	32
	Other	5	0	0	5
	Unspecified	16	1	393	410
	All	6,794	425	1,400	8,619

Parathyroid surgery: Surgeon (n=7,202)



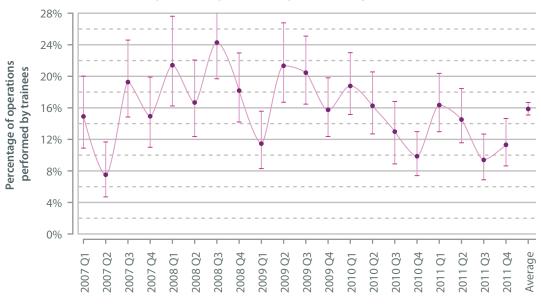
Assistant

Parathyroid surgery: assistant and operation sequence

			Operation	sequence	
		First-time	Redo	Unspecified	All
	None	76	4	3	83
	Consultant	1,184	53	213	1,450
	Fellow	86	15	44	145
يد	Staff grade	253	7	35	295
Assistant	Registrar (years 1-3)	1,722	92	217	2,031
\ssi	Registrar (years 4+)	1,135	128	163	1,426
4	BST	1,091	59	130	1,280
	Other	938	43	138	1,119
	Unspecified	309	24	457	790
	All	6,794	425	1,400	8,619

Parathyroid surgery: Assistant (n=6,886)

Fourth National Audit Report 2012


Consultant involvement

Consultant involvement:

All surgery 96.8% (8,203; 96.4-97.1%).
 First-time operations 97.0% (6,775; 96.5-97.3%).

• Redo surgery 98.6% (423; 96.8-99.4%).

Parathyroid surgery: Proportion of procedures performed by trainees (n=8,209)

Fourth National Audit Report 2012

Fourth National Audit Report 2012

Outcomes

Persisting hypercalcaemia

Persistent hypercalcaemia is a key outcome measure after surgery for primary HPT.

Univariate analysis shows several potential risk factors for persistence of hypercalcaemia after parathyroidectomy: re-operative surgery and operations for MEN-associated HPT clearly have a high relative risk, although these cases form only a minority of the total. For first-time, primary HPT there are trends towards improved cure rates with use of qPTH and targeted surgery.

However, much of this apparent improvement may be dependent upon imaging outcome. So, while performance of localisation studies (nuclear medicine \pm ultrasound) does not *per* se improve results, there is a significantly lower rate of persistent HPT for cases where nuclear medicine is positive.

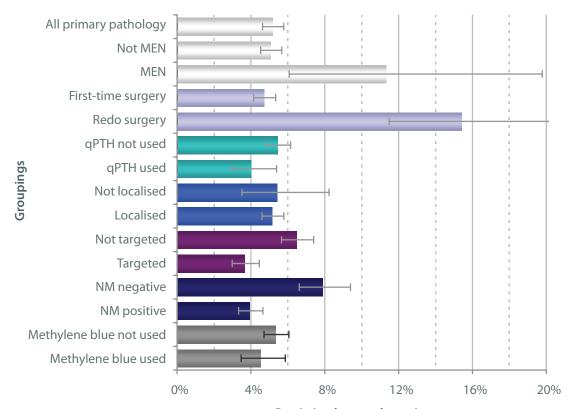
Clearly there will be interaction between these variables. For example:

- Most targeted surgery is only performed if nuclear medicine is positive.
- qPTH may be more commonly used in targeted surgery.
- Non-targeted surgery will be used if localisation is either not performed or is negative.
- Imaging is usually employed before re-do surgery.

Parathyroid surgery for patients with a primary pathology: persisting hypercalcaemia

				Persistin	g hypercalcae	mia
			No	Yes	Unspecified	Rate (95% CI)
	ogy	All primary pathology	5,647	308	1,118	5.2% (4.6-5.8%)
	Pathology	Not MEN	5,561	297	1,086	5.1% (4.5-5.7%)
	Pat	MEN	86	11	32	11.3% (6.1-19.8%)
	ion	First-time surgery	4,796	237	859	4.7% (4.1-5.3%)
	Operation sequence	Redo surgery	236	43	75	15.4% (11.5-20.3%)
		Unspecified	615	28	184	4.4% (3.0-6.3%)
	dPTH used	No	4,426	255	828	5.4% (4.8-6.1%)
		Yes	1,074	45	192	4.0% (3.0-5.4%)
ngs		Unspecified	147	8	98	5.2% (2.4-10.3%)
Groupings	pə	No	383	22	91	5.4% (3.5-8.2%)
Great	Localised	Yes	5,260	286	1,019	5.2% (4.6-5.8%)
	٤	Unspecified	4	0	8	0.0% (0.0-52.7%)
	41	Not done	842	46	123	5.2% (3.9-6.9%)
	Nuclear medicine	Negative	1,411	121	252	7.9% (6.6-9.4%)
	Nuc	Positive	3,364	138	722	3.9% (3.3-4.7%)
		Unspecified	30	3	21	9.1% (2.4-25.5%)
	ene	Not done	4,199	237	840	5.3% (4.7-6.1%)
	Methylene blue	Done	1,203	57	196	4.5% (3.5-5.9%)
	Me	Unspecified	245	14	82	5.4% (3.1-9.1%)

Fourth National Audit Report 2012

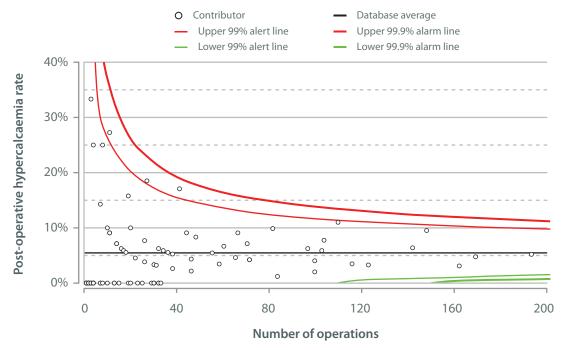

For first-time primary HPT, it is therefore interesting that in multi-variate analysis using multiple logistic regression with persistent hypercalcaemia as the binary outcome, only nuclear medicine positivity remains significant, whatever combinations of other predictor variables are combined (typical odds ratio 0.499, 95% CI: 0.345-0.722; p=0.0002).

This would imply that nuclear medicine positivity is in itself a predictor of successful outcome (or MIBI negativity a predictor of failure), irrespective of the surgical approach subsequently undertaken. For instance, persistence after first-time surgery for primary HPT is:

- nuclear medicine positive and targeted surgery: 62/2,049 = 3.03% (2.29-3.77%).
- nuclear medicine positive and non-targeted surgery: 36/827 = 4.35% (2.96-5.75%).
- nuclear medicine negative: 96 / 1,327 = 7.23% (5.84-8.63%).

The mechanism of this effect is unclear from the audit data, but it may be important to recognise this effect when comparing outcomes between members.

Parathyroid surgery for primary pathology: Persisting hypercalcaemia

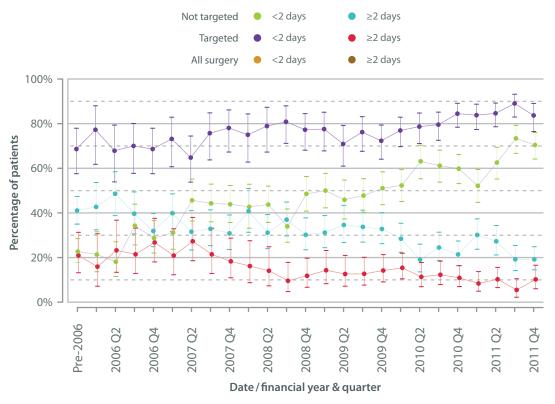

Persisting hypercalcaemia rate

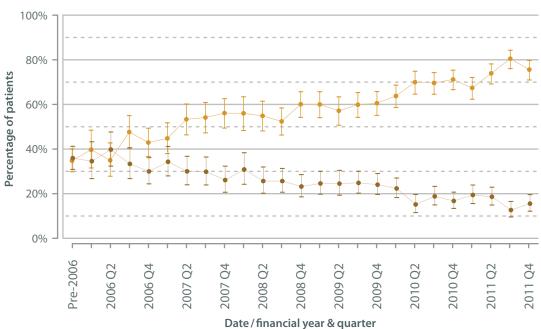
Fourth National Audit Report 2012

For the main outcome measure of persistent hypercalcaemia after surgery for primary HPT, results are relatively tightly clustered, with only 3 members outside the upper 99% alert line.

Parathyroid surgery for primary pathology: Post-operative hypercalcaemia rates; financial years 2009-2011 (n=3,471)

Fourth National Audit Report 2012




Post-operative stay

As with thyroidectomy, there has been a steady reduction in length-of-stay after parathyroid surgery. This has mainly been due to an increase in proportion of cases staying <2 days, at the expense of stays of 2 or more days. True daycases (stay = 0 days) only represent about 5% of all parathyroid operations. Of these true daycases, most (76.4%) are targeted operations.

The daycase rate for targeted surgery is 11.6%, versus 2.5% for non-targeted surgery.

Parathyroid surgery: Post -operative stay (n=7,114)

Fourth National Audit Report 2012

Proven RLN palsy

As with thyroidectomy, interpretation of the true rate of RLN palsy is hampered by the high rate of missing data and variation in use of (and reporting of) post-operative laryngoscopy. The reported rate of RLN palsy is low after first-time surgery, but, as expected, much higher after re-operative surgery.

The higher rate after surgery for renal disease might be expected, due to the requirement for bilateral exploration: the rate of injury *per* nerve at risk is unlikely to be significantly different than that for primary HPT.

Parathyroid surgery: pathology, operation sequence and new proven RLN palsy

			Proven new RLN palsy				
			No	Yes	Unspecified	Rate (95% CI)	
Pathology and operation sequence	Primary	First-time surgery	3,708	31	2,153	0.8% (0.6-1.2%)	
		Redo surgery	211	11	132	5.0% (2.6-8.9%)	
		Unspecified	542	5	280	0.9% (0.3-2.2%)	
	Renal	First-time surgery	337	5	332	1.5% (0.5-3.6%)	
		Redo surgery	27	0	31	0.0% (0.0-10.5%)	
		Unspecified	46	0	68	0.0% (0.0-6.3%)	
	Unspecified	First-time surgery	115	0	113	0.0% (0.0-2.6%)	
		Redo surgery	8	0	5	0.0% (0.0-31.2%)	
		Unspecified	24	1	434	4.0% (0.2-22.3%)	

Re-operation for haemorrhage

The rate of re-exploration for bleeding is reassuringly low after parathyroid surgery.

Targeted surgery is not immune from this complication, although the rate of bleeding is lower than for non-targeted surgery at 0.38% *versus* 0.69%.

Parathyroid surgery: pathology, operation sequence and re-operation for haemorrhage

				Re-operation for haemorrhage			
			No	Yes	Unspecified	Rate (95% CI)	
Pathology and operation sequence	Primary	First-time surgery	5,643	29	220	0.5% (0.3-0.7%)	
		Redo surgery	338	4	12	1.2% (0.4-3.2%)	
		Unspecified	752	3	72	0.4% (0.1-1.3%)	
	Renal	First-time surgery	588	6	80	1.0% (0.4-2.3%)	
		Redo surgery	55	0	3	0.0% (0.0-5.3%)	
		Unspecified	68	3	43	4.2% (1.1-12.7%)	
	Unspecified	First-time surgery	214	0	14	0.0% (0.0-1.4%)	
		Redo surgery	9	0	4	0.0% (0.0-28.3%)	
		Unspecified	36	0	423	0.0% (0.0-8.0%)	

The British Association of Endocrine and Thyroid Surgeons

Fourth National Audit Report 2012

Mortality

The mortality rate following parathyroid surgery is very low (0.2%; n = 7,578; 95% CI: 0.1-0.4%).

Mortality is higher in the renal HPT group (1.6%; n=702; 95% CI: 0.8-2.9%) than in the primary pathology group (0.1%; n=6,623; 95% CI: 0.0-0.2%), as expected, due to the known associated co-morbidities of renal failure.

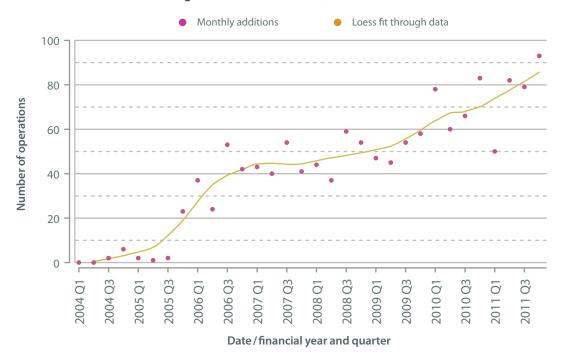
Patient age did not appear to influence the probability of mortality:

Median (IQR) age of survivors = 61 years (51-71 years), compared to 63 years (51-74 years) for those who died (p=0.75, Mann-Whitney U test).

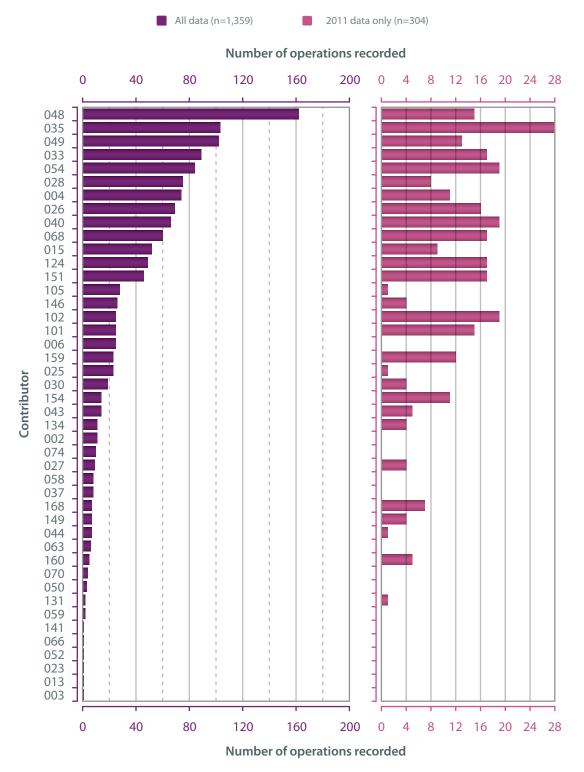
Two deaths occurred in patients under 40 years of age: one aged 32 and one aged 22 years (both renal HPT cases).

Surgery for adrenal disease

Fourth National Audit Report 2012


Surgery for adrenal disease

General information from the database


Number of procedures

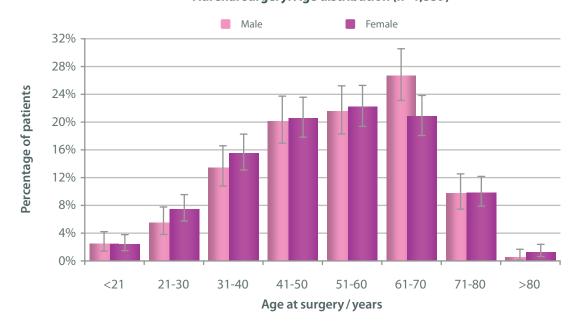
As with thyroid and parathyroid surgery, there is increasing participation in the audit amongst members reporting adrenal cases.

The growth of the database (n=1,359 adrenal cases)

Adrenal surgery: Number of operations reported by each member

Fourth National Audit Report 2012

Demographics and disease profile


Age and gender

The demographic distribution of adrenal disease has changed little since the last report, with most operations reported in *middle age* and with a slight female predominance.

Adrenal surgery: age and gender distributions

		Gender					
		Male	Female	Unspecified	All	Proportion female	
	<21	14	19	0	33	57.6%	
	21-30	31	59	0	90	65.6%	
ars	31-40	76	123	0	199	61.8%	
/ ye	41-50	114	163	0	277	58.8%	
Jery	51-60	122	176	0	298	59.1%	
surgery / years	61-70	151	165	0	316	52.2%	
Age at	71-80	55	78	0	133	58.6%	
Age	>80	3	10	0	13	76.9%	
	Unspecified	0	0	0	0	NA	
	All	566	793	0	1,359	58.4%	

Adrenal surgery: Age distribution (n=1,359)

Fourth National Audit Report 2012

Diagnosis

The majority of operations are carried out for functional tumours, with phaeochromocytoma being the commonest diagnosis.

The 2009 report recorded a slight increase in the rate of metastasectomy from the previous report, and this trend seems to be continuing: 5.0% (95% CI: 3.9-6.3%) compared to 3.0% (95% CI: 1.9-4.5%) in 2009.

The audit design cannot elucidate if this is due to an increasing trend towards active treatment of known metastases, increasing diagnosis of metastatic disease in *incidentalomas* or other reasons.

Other diagnoses include:

•	Cysts / pseudo-cysts	16.
•	Paragangliomas	13.
•	Myelolipoma	8.
•	Other mixed/ectopic hormone secreting lesions	7.
•	Ganglioneuroma	6.
•	Congenital adrenal hyperplasia	4.
•	Recurrent Adrenocortical Cancer	4.
•	Oncocytoma	2.
•	Teratoma	2.
•	Sarcoma	2.

Various others including haemangioma, haematoma, a splenunculus, lymphoma.

Adrenal surgery: diagnosis

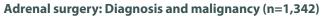
		Data	
		Count	Rate (95% CI)
	Adenoma	126	9.4% (7.9-11.1%)
	Carcinoma	78	5.8% (4.6-7.2%)
	Conn's	220	16.4% (14.5-18.5%)
osis	Cushing's	260	19.4% (17.3-21.6%)
Diagnosis	Metastasis	67	5.0% (3.9-6.3%)
Dia	Phaeo	446	33.2% (30.7-35.8%)
	Other	145	10.8% (9.2-12.6%)
	Unspecified	17	
	All	1,359	

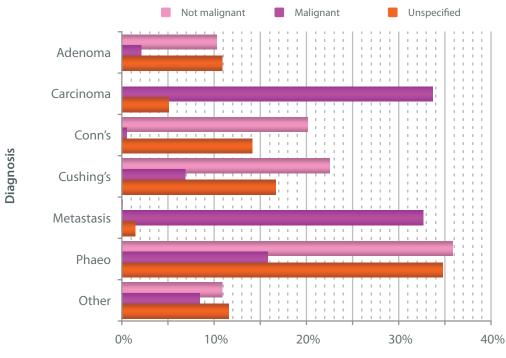
Fourth National Audit Report 2012

Malignancy

Malignancy and diagnosis

Malignancy is recorded as a separate field in the database, allowing some comparison between stated malignancy rates for the various functioning / non-functioning tumours, although such assessment is limited by the relatively high rate of unspecified data (at around 20% overall).

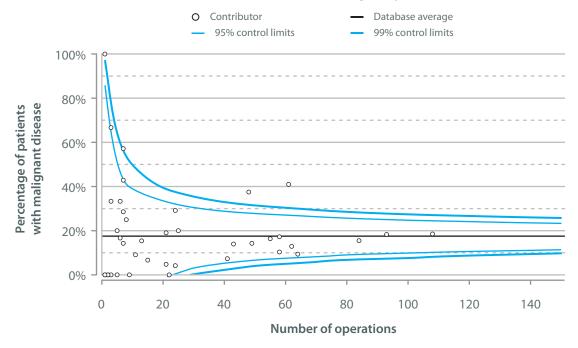

Data for malignancy might be missing due to:


- Doubt as to the true malignant / benign nature of the disease, given the limitations of histology in making this distinction for much adrenal pathology. This might explain why the majority of malignancy unspecified cases are in phaeochromocytomas, while the majority of definitely malignant cases are carcinomas and metastases.
- Audit fatigue (for instance, the Malignancy field is unspecified where the Diagnosis field implies that malignant status is actually established i.e., benign {adenoma} or malignant {carcinoma}).

For functioning tumours, the stated rates of malignancy were:

- Conn's: 220 cases, 39 malignancy unspecified, 1 malignant = 0.45%.
- Cushing's: 261 cases, 46 malignancy unspecified, 13 malignant = 4.98%.
- Phaeochromocytoma: 446 cases, 96 malignancy unspecified, 30 malignant = 6.73%.

These considerations may influence the differences in stated malignancy rates seen between individual members.


Percentage of patients

Fourth National Audit Report 2012

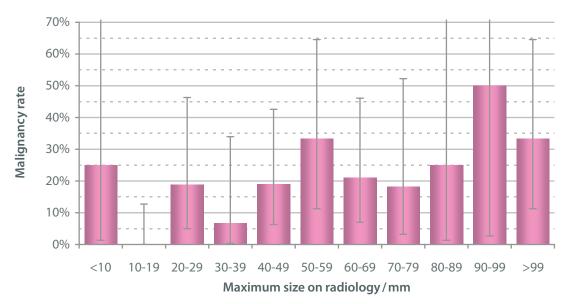
Malignancy rates for each member

Adrenal disease: Rates of malignancy (n=1,083)

Fourth National Audit Report 2012

Malignancy and maximum size on radiology

Since the last report the database has been amended to include data on tumour size. This allows some correlation between malignancy risk and lesion size, although, because this is a new field, the number of cases with information on lesion size is limited.


The relationship between malignancy rate and lesion size is not as clear-cut as expected, with a significant proportion under 50 mm. Of the smaller malignant lesions, however, all are represented by either metastases or phaeochromocytomas. The smallest adrenocortical cancer recorded was 50 mm, although, as noted above, the presence or absence of malignancy may be difficult to establish with certainty.

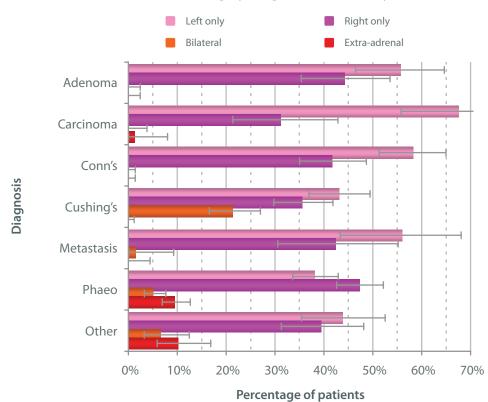
The majority of benign lesions that are >99 mm diameter are phaeochromocytomas (where diagnosis is stated). There are insufficient data on lesion size to examine reliably its influence on surgical approach (laparoscopic *versus* open), but in future this may also be feasible.

Adrenal surgery: malignancy and maximum size by radiology; data collected since the revision of the dataset

		Malignant				
		No	Yes	Unspecified	Rate (95% CI)	
	<10	3	1	0	25.0% (1.3-78.1%)	
mm	10-19	22	0	0	0.0% (0.0-12.7%)	
	20-29	13	3	3	18.8% (5.0-46.3%)	
by radiology / mm	30-39	14	1	0	6.7% (0.3-34.0%)	
000	40-49	17	4	3	19.0% (6.3-42.6%)	
radi	50-59	8	4	0	33.3% (11.3-64.6%)	
by	60-69	15	4	0	21.1% (7.0-46.1%)	
size	70-79	9	2	0	18.2% (3.2-52.2%)	
	80-89	3	1	0	25.0% (1.3-78.1%)	
Maximum	90-99	1	1	2	50.0% (2.7-97.3%)	
Ma	>99	8	4	1	33.3% (11.3-64.6%)	
	Unspecified	19	6	11		
	All	132	31	20		

Adrenal surgery: Malignancy and maximum size on radiology (n=138)

Fourth National Audit Report 2012


Diagnosis and anatomy

As expected, the majority of bilateral adrenalectomies are performed for phaeochromocytoma and Cushing's disease, with the former also accounting for most extra-adrenal pathology.

Adrenal surgery: diagnosis and anatomy

		Anatomy					
		Left	Right	Bilateral	Extra- adrenal	Unspecified	All
	Adenoma	68	54	0	0	4	126
	Carcinoma	52	24	0	1	1	78
	Conn's	123	88	0	0	9	220
sis	Cushing's	109	90	54	0	7	260
Diagnosis	Metastasis	37	28	1	0	1	67
Dia	Phaeo	166	206	22	41	11	446
	Other	60	54	9	14	8	145
	Unspecified	4	6	0	0	7	17
	All	619	550	86	56	48	1,359

Adrenal surgery: Diagnosis and anatomy (n=1,301)

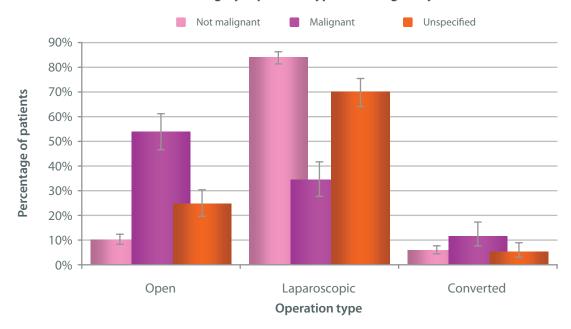
Fourth National Audit Report 2012

Operation

Operation type

Overall, the laparoscopic approach to adrenal ectomy is favoured, with 81% having an initial laparoscopic approach, of which 8.1% are converted to open surgery.

For laparoscopic surgery, the transperitoneal approach is favoured over the posterior (91.5% transperitoneal), with no significant change since 2009.


As in the 2009 report, it is clear that for malignant cases:

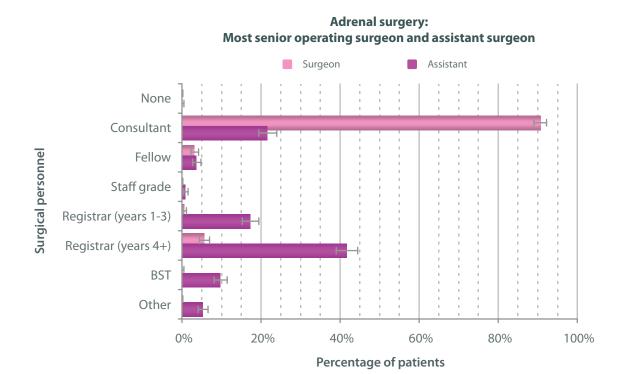
- Open surgery is more common than laparoscopic.
- Conversion to open surgery is commoner (if the initial approach was laparoscopic) for malignant cases (25.3%; 22/87) *versus* benign (6.5%; 52/796).

Adrenal surgery: operation type and malignancy

		Malignant				
		No	Yes	Unspecified	All	
type	Open	90	102	65	257	
	Laparoscopic	744	65	185	994	
tio	Converted	52	22	14	88	
Operation	Unspecified	7	1	12	20	
Ö	All	893	190	276	1,359	

Adrenal surgery: Operation type and malignancy (n=1,339)

Fourth National Audit Report 2012

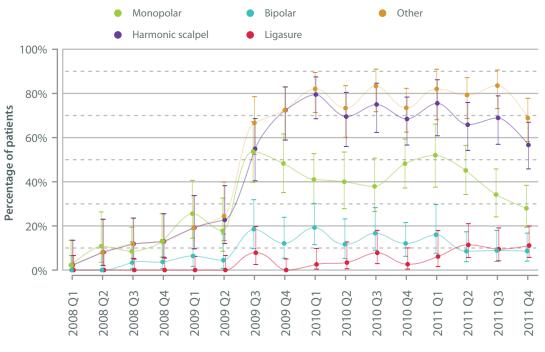

The surgical team

Adrenal surgery is clearly consultant-led, with a consultant being either principal surgeon or assistant in 96.6% of operations.

Where a consultant was primary surgeon and assistant was recorded, this assistant was also a consultant in 17.3% of operations. This might imply a significant degree of post-CCT training/mentoring of consultants in performance of adrenal surgery.

Adrenal surgery: surgical personnel

		Surgical personnel			
		Surg	jeon	Assis	stant
		Count	Proportion	Count	Proportion
	None	0	0.0%	1	0.1%
	Consultant	1,207	90.8%	282	21.6%
	Fellow	41	3.1%	47	3.6%
ype	Staff grade	0	0.0%	11	0.8%
on t	Registrar (year 1-3)	7	0.5%	225	17.3%
Operation type	Registrar (year 4+)	74	5.6%	544	41.7%
Ope	BST	1	0.1%	126	9.7%
	Other	0	0.0%	68	5.2%
	Unspecified	29		55	
	All	1,359		1,359	



Fourth National Audit Report 2012

Energy source used

The majority of adrenal surgery is now carried out using *alternative* energy sources, principally the Harmonic scalpel, with a small more recent increase in use of the Ligasure device.

Adrenal surgery: Energy source (n=989)

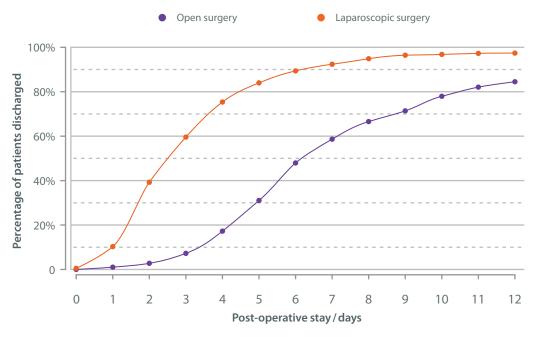
Date/financial year & quarter

Fourth National Audit Report 2012

Fourth National Audit Report 2012

Outcomes

Post-operative stay


The principal determinant of length -of-stay after adrenal surgery is whether surgery is carried out laparoscopically or not.

The shortest stays are associated with non-functioning benign adenomas and with Conn's disease, as most are successfully treated laparoscopically. The remaining functional tumours have a higher conversion rate (detailed above), and open surgery is most frequent for carcinoma, hence the longer length-of-stay for these diagnoses.

Adrenal surgery: post-operative stay

			Pe	ost-operative sta	ау
			Count	Median	IQR
				days	days
		Adenoma	112	3.0	2 - 5
		Carcinoma	67	7.0	5 - 10
		Conn's	181	2.0	2 - 3
	sis	Cushing's	218	4.0	3 - 6
	Diagnosis	Metastasis	60	4.0	2 - 7
<u>v</u>		Phaeo	374	4.0	3 - 6
Groupings		Other	116	4.0	2 - 7
dno		Unspecified	3	4.0	3 - 6
Ū		All	1,131	4.0	2-6
	ā	Open	213	7.0	5 - 10
	typ	Laparoscopic	836	3.0	2 - 4
	itior	Converted	77	7.0	5 - 10
	Operation type	Unspecified	5	5.0	4 - 28
	ō	All	1,131	4.0	2-6

Adrenal surgery: Patterns of post-operative stay (n=1,126)

Fourth National Audit Report 2012

Related readmission

Re-admission is reassuringly uncommon after adrenal surgery, and little difference exists between open and laparoscopic approaches.

Adrenal surgery: related readmission and operation type

		Related readmission					
		No	Yes	Unspecified	Rate		
type	Open	187	4	66	2.1% (0.7-5.6%)		
	Laparoscopic	680	20	294	2.9% (1.8-4.5%)		
Operation	Converted	59	2	27	3.3% (0.6-12.4%)		
oera	Unspecified	5	0	15	0.0% (0.0-45.1%)		
Ö	All	931	26	402	2.7% (1.8-4.0%)		

Mortality

Mortality is also reassuringly low, with only 3 further deaths reported since the 2009 report:

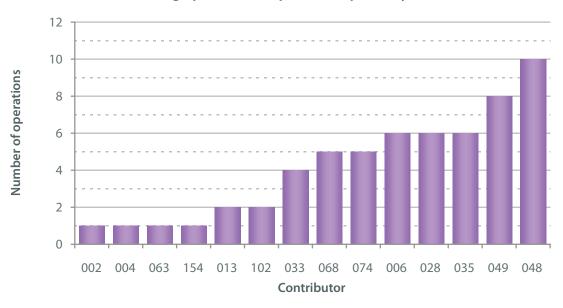
- 7 deaths/1,257 (another 102 unspecified) = 0.6% (95% CI: 0.2-1.2%).
- 4 male patients; 3 female patients.
- the patients were aged: 60, 61, 65, 67, 68, 69 and 70 years.
- the associated diagnoses were: Carcinoma \times 1, Metastases \times 1, Phaeo \times 3, Other \times 2.
- 2 procedures were open, 2 performed laparoscopically and 3 were converted.

Surgery for endocrine pancreatic disease

Fourth National Audit Report 2012

Surgery for endocrine pancreatic disease

General information from the database


Number of members

Only 7 operations for endocrine pancreatic disease have been added to the database since the 2009 report, with no member adding more than 2 cases.

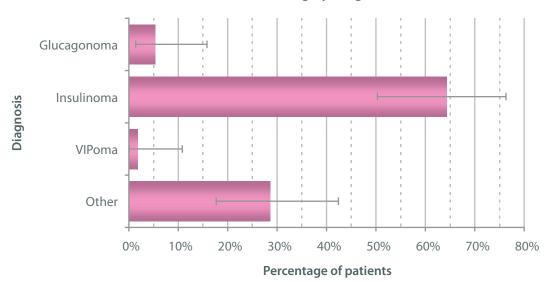
The conclusions of this report are therefore very similar:

- Insulinoma was the commonest diagnosis.
- Around a third of cases were attempted laparoscopically, with a 10% conversion rate.
- Post-operative length-of-stay was shorter if surgery was performed laparoscopically.
- Short-term complications were not infrequent, particularly respiratory problems and pancreatic fistulae.
- However, mortality was zero.

Pancreatic surgery: Number of operations reported by each member (n=58)

Fourth National Audit Report 2012

Demographics and disease profile


Diagnosis

As expected, insulinoma is the commonest diagnosis in pancreatic endocrine surgery.

Pancreatic surgery: diagnosis

		Data		
		Count	Rate (95% CI)	
	Glucagonoma	3	5.4% (1.4-15.8%)	
<u>.s</u>	Insulinoma	36	64.3% (50.3-76.3%)	
Diagnosis	VIPoma	1	1.8% (0.1-10.8%)	
jag	Other	16	28.6% (17.7-42.4%)	
	Unspecified	2		
	All	58		

Pancreatic surgery: Diagnosis (n=56)

Fourth National Audit Report 2012

Operation

Type of operation

Six members 20 procedures with laparoscopic intent; conversion rate = 10.0%.

10 enucleation; 7 distal pancreatectomy; 2 Other (splenectomy, cholecystectomy).

Insulinoma (n=15): 66.7% (95% CI: 38.7-87.0%).

Pancreatic surgery: type of operation

		Data		
		Count	Rate (95% CI)	
	Open	37	64.9% (51.1-76.8%)	
of tion	Laparoscopic	18	31.6% (20.3-45.4%)	
a E	Converted	2	3.5% (0.6-13.2%)	
Tyk	Unspecified	1		
	All	58		

Surgeon

In all but three cases the most senior surgeon was a consultant. In the three cases where a Registrar (Year 4+) was the main operating surgeon a consultant was the assistant surgeon.

Fourth National Audit Report 2012

Outcomes

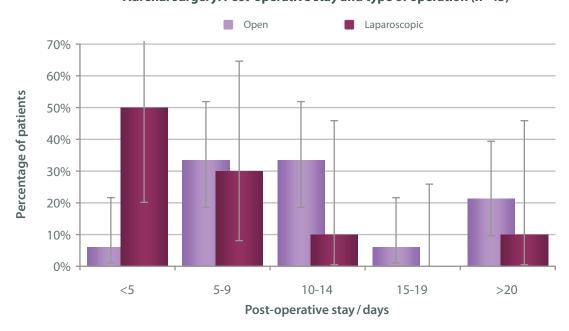
Crude in-hospital mortality

No deaths; 3 patients with unspecified status data.

No fistulae (in the *Fistula* question; 50/58 unknown) There are some data in the *Other complications* text field that suggest 4 patients have had a fistula (5 unknowns / 58 patients).

No pancreatitis (49/58 unknown).

No re-operations (4/58 unknown).

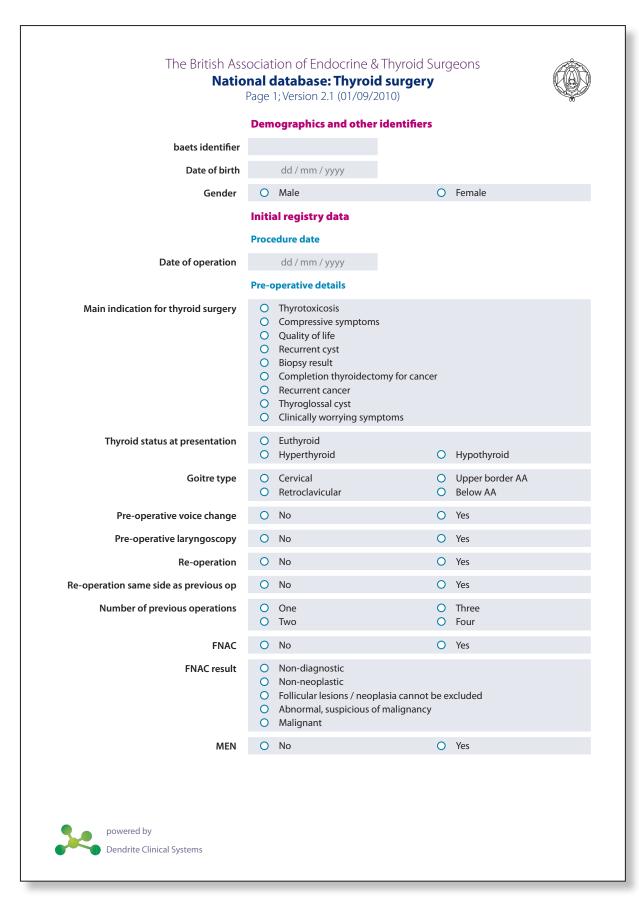

Post-operative complications: 53 / 58 known; 2 (3.8%) respiratory; 9 (13.2%) other (collection requiring drainage; fistula for 3 weeks; insulin-dependent diabetes; low volume pancreatic fistula; pancreatic fistula; port site cellulitis).

Post-operative stay

Pancreatic surgery: post-operative stay and type of operation

		Type of operation					
		Open	Laparoscopic	Converted	Unspecified	All	
	<5	1	5	1	0	7	
stay	5-9	11	3	0	1	15	
ive	10-14	11	1	0	0	12	
erativ days	15-19	2	0	0	0	2	
do-	>19	7	1	0	0	8	
Post-operative /days	Unspecified	5	8	1	0	14	
	All	37	18	2	1	58	

Adrenal surgery: Post-operative stay and type of operation (n=43)


Appendices

Fourth National Audit Report 2012

Appendices

The database forms

Fourth National Audit Report 2012

The British Association of Endocrine & Thyroid Surgeons **National database: Thyroid surgery** Page 2; Version 2.1 (01/09/2010) baets identifier Date of operation dd / mm / yyyy **Thyroid procedure** Consultant 0 Grade of principal surgeon 0 Registrar (year 4+) Staff grade 0 Registrar (year 1-3) Fellow Other 0 BST 0 None 0 BST **Grade of assistant** 0 Consultant Staff grade O Registrar (year 4+) Fellow O Registrar (year 1-3) Other O No Yes Previous contralateral lobectomy O No Yes Isthmusectomy alone O None Side of thyroid procedure □ Left Right Thyroid procedure: left Lobectomy Biopsy Sub / near total lobectomy Other C Lobectomy Biopsy Thyroid procedure: right Sub / near total lobectomy Other Node dissection: right 0 None Ι Π III ☐ IV □ V □ VI VII Biopsy only 0 Node dissection: right None I H ☐ III ■ IV □ V VI VII ■ Biopsy only powered by **Dendrite Clinical Systems**

Fourth National Audit Report 2012

The British Association of Endocrine & Thyroid Surgeons **National database: Thyroid surgery** Page 3; Version 2.1 (01/09/2010) baets identifier Date of operation dd / mm / yyyy Thyroid procedure continued ... Thyroid malignancy resectable O No Not applicable 0 Yes O No O Yes Thymectomy Nerve monitoring used O No Yes Medtronic NM Other Monitor Magstim Other monitor O No Yes ET tube with integrated electrodes **Energy source used** Monopolar diathermy Other Bipolar diathermy Bipolar scissors Other energy source used Lotus Harmonic scalpel Gyrus Ligasure Other Other energy source Thyroid pathology Hurthle cell adenoma **Primary** pathology Anaplastic cancer O Hurthle cell carcinoma Auto-immune thyroiditis 0 C-cell hyperplasia O Lymphoma 0 Colloid goitre Medullary thyroid cancer 0 Colloid adenoma Metastatic cancer 0 Follicular adenoma Papillary thyroid cancer 0 Follicular thyroid cancer Simple cyst Graves' disease Other cancer Other Other primary pathology Additional pathology Anaplastic cancer O Hurthle cell carcinoma Auto-immune thyroiditis C-cell hyperplasia Lymphoma 0 Colloid goitre Medullary thyroid cancer 0 Colloid adenoma Metastatic cancer 0 Follicular adenoma Papillary thyroid cancer 0 Follicular thyroid cancer Simple cyst 0 Graves' disease Other cancer O Other Hurthle cell adenoma Other additional pathology powered by **Dendrite Clinical Systems**

Natio	nal d	ion of Endoo database: T 4; Version 2.1 (hyr	oid surg		, 201.15		
baets identifier								
Date of operation		dd / mm / yyyy	/					
	Thyr	oid cancer detai	ls					
TNM staging	0 0 0	T0 T1a T1b T2	0	T3 T4a T4b TX	0	N0 N1a N1b NX	_	M0 M1
Stage	0	Stage I Stage II		Stage III Stage IVA		Stage IVB Stage IVC		
Discussed at MDM before first operation	0	No			0	Yes		
Discussed at MDM before after operation	0	No			0	Yes		
Side of primary	0	Right Left			0	Bilateral		
Thyroid discharge details								
Re-operation for haemorrhage	0	No			0	Yes		
Hypocalcaemia	0	No			0	Yes		
Hypocalcaemia treatment given	0	No			0	Yes		
Post-operative complications	0	None MI DVT / PE				Respiratory CVA Other		
Other complication								
Patient survival	0	Alive			0	Died in hospi	ital	
Date of discharge / death		dd / mm / yyyy	/					
	Thyr	oid follow up						
Date of follow up		dd / mm / yyyy	/					
Related re-admission	0	No			0	Yes		
Date of readmission		dd / mm / yyyy	/					
Voice change	0	No			0	Yes		
Voice cord check done	0	Not done	0	Normal	0	Abnormal		
Detail of abnormal voice cord check	0	Recovered	0	Persistent	0	Pre-existing		
Date of final voice cord check exam		dd / mm / yyyy	/			.,		
Is the patient on T3 / T4	0	No				Yes		
Patient on Ca supplements or vitamin D	0	No			0	Yes		

Natior	ociation of Endocrine & Thyroid Surgeons nal database: Thyroid surgery Page 5; Version 2.1 (01/09/2010)	
baets identifier		
Date of operation	dd / mm / yyyy	
	Comments	
Patient comment		
Database comment		
powered by		

Nationa	al da	ion of Endocrine & Thy tabase: Parathyroid s 1; Version 2.1 (01/09/2010)	_	jeons	
	Dem	ographics and other iden	tifiers		
baets identifier					
Date of birth		dd / mm / yyyy			
Gender	0	Male	0	Female	
	Initia	al registry data			
	Parat	thyroid investigations and pa	thology		
Pre-operative cord check	0	No	0	Yes	
Venous sampling	0	Negative Positive	0	Not done	
Nuclear medicine	0	Negative Positive	0	Not done	
PET	0	Negative Positive	0	Not done	
Ultrasound	0	Negative Positive	0	Not done	
Gamma probe	0	Negative Positive	0	Not done	
CT / MRI	0	Negative Positive	0	Not done	
Methylene blue	0	Negative Positive	0	Not done	
Primary pathology	0	Sporadic MEN	0	Familial HPT Carcinoma	
Renal patholgy		Normocalcaemia Hypercalcaemia Medical Rx alone		Dialysis Post-transplant	
	Parat	thyroid operation			
Date of operation		dd / mm / yyyy			
Grade of principal surgeon	0 0 0	Consultant Registrar (year 4+) Registrar (year 1-3) BST	0 0	Staff grade Fellow Other	
Grade of assistant	0 0 0	None Consultant Registrar (year 4+) Registrar (year 1-3)	0	BST Staff grade Fellow Other	
powered by Dendrite Clinical Systems					

Fourth National Audit Report 2012

The British Association of Endocrine & Thyroid Surgeons **National database: Parathyroid surgery** Page 2; Version 2.1 (01/09/2010) baets identifier Date of operation dd / mm / yyyy Parathyroid procedure continued ... 0 0 O 3 Number of glands removed 0 1 O 3.5 O 2 O 4 O No O Yes Is this a re-operation 0 O Three Number of previous operations One 0 Two O Four Location of tumour Eutopic Ectopic chest O Ectopic neck Yes O No Targeted approach Converted to conventional O No Yes qPTH measured O No Yes Supernumary Yes O No O Yes Nerve monitoring used Medtronic NM O Other Monitor 0 Magstim Other monitor Yes ET tube with integrated electrodes O No Parathyroid discharge details O No Yes Re-operation for haemorrhage O No Yes Hypocalcaemia Hypocalcaemia treatment given O No Yes Respiratory Post-operative complications 0 None MI □ CVA ■ DVT / PE Other Other complication Alive O Died in hospital Patient survival Date of discharge / death dd/mm/yyyy powered by Dendrite Clinical Systems

Nationa	al da	ion of Endocrine & tabase: Parathyro 3; Version 2.1 (01/09/2	oid surge		geons	
baets identifier						
Date of operation		dd / mm / yyyy				
	Parat	hyroid follow up				
Date of follow up	Turu	dd / mm / yyyy				
Persisting hypercalcaemia	0			0	Yes	
Related re-admission	0				Yes	
Date of readmission		dd / mm / yyyy				
Voice change	0	No		0	Yes	
Voice cord check	0	Not done		0	Negative	
				0	Positive	
Details of abnormal voice cord check	0	Recovered Persistent		0	Pre-existing	
Date of final voice cord exam		dd / mm / yyyy				
Patient on Ca supplements or vitamin D	0	No		0	Yes	
	Com	ments				
Database comment						
Patient comment						
powered by						
Dendrite Clinical Systems						

Natio	nal d	tion of Endocrine & latabase: Adrena 1; Version 2.1 (01/09/2	al surgery	_	jeons	
	Dem	ographics and other	identifiers			
baets identifier						
Date of birth		dd / mm / yyyy				
Gender	0	Male		0	Female	
	Initi	al registry data				
	Adre	nal investigations and _ا	pathology			
Adrenal diagnosis	0	Conn's Cushing's Phaeo Adenoma		0	Carcinoma Metastasis Other	
Other adrenal diagnosis						
Adrenal anatomy	0	Left Right		0	Bilateral Extra-adrenal	
Malignant	0	No		0	Yes	
MEN	0	No		0	Yes	
Maximum diameter by radiology		mm				
	Adre	nal operation				
Date of operation		dd / mm / yyyy				
Grade of principal surgeon	0	Consultant Registrar (year 4+) Registrar (year 1-3) BST		0	Staff grade Fellow Other	
Grade of assistant	_	Consultant Registrar (year 4+)		0	BST Staff grade Fellow Other	
Adrenal operation type	0	Open Laparoscopic		0	Converted	
Adrenal operation approach	0	Transperitoneal		0	Posterior	
Energy source used		Monopolar diathermy Bipolar diathermy			Other	
Other energy source used	0 0	Harmonic scapel		0	Lotus Gyrus Other	
Other energy source						
powered by Dendrite Clinical Systems						

		ion of Endocrine & latabase: Adrena		geons	
		2; Version 2.1 (01/09/2			
baets identifier					
Date of operation		dd / mm / yyyy			
	Adre	nal discharge details			
Re-operation for haemorrhage	0	No	C	Yes	
Post-operative complications	0 🗆	None MI DVT / PE		Respiratory CVA Other	
Other complication		541712		Other	
Patient survival	0	Alive	C	Died in hospital	
Date of discharge / death		dd / mm / yyyy		·	
	Adre	nal follow up			
Date of follow up		dd / mm / yyyy			
Related re-admission	0	No	C	Yes	
Date of readmission		dd / mm / yyyy			
	Com	ments			
Patient comment					
Database comment					
powered by					
Dendrite Clinical Systems					

		1; Version 2.1 (01/09/2				36
baets identifier						
Date of birth		dd / mm / yyyy				
Gender	0	Male		0	Female	
	Initia	al registry data				
		reas investigations and	nathology			
Pancreas diagnosis	0	Insulinoma	pathology	0	VIPoma	
Tuncicus diagnosis	0	PPoma		0	Somatostatinoma	
	O	Glucagonoma		O	Other	
Other pancreas diagnosis	•	N		_	v	
MEN	O	No		O	Yes	
	Panc	reas operation				
Date of operation		dd / mm / yyyy				
Grade of principal surgeon	_	Consultant Registrar (year 4+)		0	Staff grade	
	0	Registrar (year 1-3)		0	Fellow	
		BST		_	Other	
Grade of assistant	0	None Consultant		0	BST Staff grade	
		Registrar (year 4+) Registrar (year 1-3)			Fellow Other	
Pancreas operation type	0				Converted	
· and and operation type		Laparoscopic		Ŭ	Contented	
Pancreas procedure		Enucleation			Total pancreatectomy	
		Distal resection Right-sided pancreated	tomy		Other	
Other pancreas procedure						
Energy source used		Monopolar diathermy			Other	
		Bipolar diathermy				
Other energy source used	0	Bipolar scissors Harmonic scapel			Lotus Gyrus	
		Ligasure			Other	
Other energy source						

Nation	al da	ion of Endocrine & tabase: Pancrea 2; Version 2.1 (01/09/2	tic surgery	jeons	
baets identifier					
Date of operation		dd / mm / yyyy			
	Panc	reas discharge details			
Patient survival	0	Alive	0	Died in hospital	
Date of discharge / death		dd / mm / yyyy			
	Panc	reas follow up			
Date of follow up		dd / mm / yyyy			
Related re-admission	0	No	0	Yes	
Date of readmission		dd / mm / yyyy			
Patient comment	Comi	ments			
Database comment					
powered by					
Dendrite Clinical Systems					

Fourth National Audit Report 2012

Notes

Appendices

Fourth National Audit Report 2012

Notes

Appendices

Fourth National Audit Report 2012

Notes

Fourth National Audit Report 2012

Notes

Appendice

Fourth National Audit Report 2012

Notes

Fourth National Audit Report 2012

Notes

Appendices

Fourth National Audit Report 2012

Notes

A national audit of patients undergoing endocrine surgery

Measures of clinical outcomes are set to gain increasing importance in the political agenda of the National Health Service. In the United Kingdom Government's recent Health and Social Care Bill it is stated that:

There will be a relentless focus on clinical outcomes.

Improvements in healthcare outcomes will be the central purpose of the NHS.

There will be ability to link quality measures in national clinical audits to payment arrangements.

Clinicians will be mandated to collect information on their clinical activity as part of medical revalidation, for which process the GMC advise all doctors to take part in regular and systematic audit.

Patients also rightly expect surgeons to examine and reflect upon their results, with the aim of ensuring highquality surgical care.

The BAETS has remained committed to audit over a period of many years, operating since 2000 a national audit of outcomes for patients undergoing surgery for thyroid, parathyroid, adrenal and endocrine pancreatic disease. This fourth report of the national audit details the ongoing progress made in recording surgical outcomes and refining analysis of those factors that influence them. The outcome measures under scrutiny remain highly relevant, being clinically important for patients and directly linked to the skill of the individual surgeon. Participation in the audit continues to increase over time, and the results provide many valuable insights into the investigation, treatment and outcomes of endocrine surgical diseases.

The report contains much that will be of interest to surgeons, patients, clinical commissioners, regulatory bodies and NHS Trusts, and demonstrates the readiness of the BAETS for a new era of emphasis on clinical outcomes in the NHS.

Mr David Chadwick

The British Association of Endocrine & Thyroid Surgeons

Department of Surgery

Chesterfield Royal Hospital

Calow. Chesterfield

S44 5BI

fax

United Kingdom

phone +44 (0) 1246 513 197

email david.chadwick@chesterfieldroyal.nhs.uk

+44 (0) 1246 512 313

www.baets.co.uk

Dr Peter K.H. Walton
Dendrite Clinical Systems
Managing Director
The Hub, Station Road
Henley-on-Thames
Oxfordshire RG9 1AY
United Kingdom

phone +44 (0) 1491 411 288 fax +44 (0) 1491 411 377

email peter.walton@e-dendrite.com

www.e-dendrite.com